Skip to main content
Log in

Fabrication of microwave absorbing Ni/NiO/C nanofibers with robust superhydrophobic properties by electrospinning

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic (EM) wave absorbing materials with superhydrophobic property and enhanced microwave absorbing ability are very important for the application of stealth technologies, especially in humid conditions. In the present work, the electrospinning technique was employed to fabricate NiAc/PVA nanofibers (NFs) from nickel acetate tetrahydrate (NiAc) and poly(vinyl alcohol) (PVA) solution as precursors, while the PVA component was further pyrolyzed and carbonized to obtain Ni/NiO/C NFs. Microwave absorption performance and EM parameters of the prepared NFs were then investigated from 2.0 to 18.0 GHz. Comparative studies between different samples elucidated not only the possible causes for lose mechanisms, but also impedance matching. According to the experimental results, when NiAc/PVA NFs contained 8% NiAc, the calcinated Ni/NiO/C NFs could achieve an optimum reflection loss of − 33.9 dB at 10.4 GHz under a thickness of 2.5 mm and exhibit an effective frequency bandwidth of 5.7 GHz. Furthermore, the membrane of Ni/NiO/C NFs with the best absorption property exhibited robust hydrophobicity and the contact angle was 144.9°, It shows that the obtained Ni/NiO/C NFs have a broad application prospect in waterproof stealth materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Wang, B. Zhang, W. Zhang, M. Yu, L. Cui, X. Cao, J. Liu, Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance. Sci. Rep. 7(1), 1584 (2017)

    Google Scholar 

  2. W. She, H. Bi, Z. Wen, Q. Liu, X. Zhao, J. Zhang, R. Che, Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@alpha-MnO2 microspindles studied by electron holography. ACS Appl. Mater. Interfaces 8(15), 9782–9789 (2016)

    CAS  Google Scholar 

  3. Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016)

    CAS  Google Scholar 

  4. B. Wang, J. Zhang, T. Wang, L. Qiao, F. Li, Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys Compd. 567, 21–25 (2013)

    CAS  Google Scholar 

  5. T. Wang, H. Wang, X. Chi, R. Li, J. Wang, Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74, 312–318 (2014)

    CAS  Google Scholar 

  6. Y. Shen, Y. Wei, J. Li, Q. Li, J. Ma, P. Wang, B. Li, W. He, X. Du, Preparation of microwave absorbing Co–C nanofibers with robust superhydrophobic properties by electrospinning. J. Mater. Sci. 30, 3365–3377 (2019)

    CAS  Google Scholar 

  7. H. Xu, W. Sun, X. Qiu, L. Wang, M. Yu, Q. Zhang, Structural, magnetic and microwave absorption properties of Ni-doped ZnO nanofibers. J. Mater. Sci. 28(3), 2803–2811 (2016)

    Google Scholar 

  8. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8(9), 6101–6109 (2016)

    CAS  Google Scholar 

  9. J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen, S. Li, S. Li, J. Yang, R. Zhang, Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6(26), 7128–7140 (2018)

    CAS  Google Scholar 

  10. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, Constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 7(36), 20090–20099 (2015)

    CAS  Google Scholar 

  11. W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017)

    CAS  Google Scholar 

  12. Y. Cheng, M. Tan, P. Hu, X. Zhang, B. Sun, L. Yan, S. Zhou, W. Han, Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property. Appl. Surf. Sci. 448, 138–144 (2018)

    CAS  Google Scholar 

  13. X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4(9), 1860–1870 (2016)

    CAS  Google Scholar 

  14. S. Dai, B. Quan, X. Liang, J. Lv, Z. Yang, G. Ji, Y. Du, Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure. Nanotechnology 29(19), 195603 (2018)

    Google Scholar 

  15. P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8(8), 5536–5546 (2016)

    CAS  Google Scholar 

  16. C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    CAS  Google Scholar 

  17. Y. Shen, Y. Wei, J. Ma, Q. Li, J. Li, W. Shao, P. Yan, G. Huang, X. Du, Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram. Int. 45(3), 3313–3324 (2019)

    CAS  Google Scholar 

  18. Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9(12), 3671–3682 (2016)

    CAS  Google Scholar 

  19. Y. Lan, X. Li, Y. Zong, Z. Li, Y. Sun, G. Tan, J. Feng, Z. Ren, X. Zheng, In-situ synthesis of carbon nanotubes decorated by magnetite nanoclusters and their applications as highly efficient and enhanced microwave absorber. Ceram. Int. 42(16), 19110–19118 (2016)

    CAS  Google Scholar 

  20. G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012)

    CAS  Google Scholar 

  21. B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, Y. Du, Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 129, 310–320 (2018)

    CAS  Google Scholar 

  22. X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, C.G. Lee, Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89(5), 053115 (2006)

    Google Scholar 

  23. Y. Sun, X. Liu, C. Feng, J. Fan, Y. Lv, Y. Wang, C. Li, A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J. Alloys Compd. 586, 688–692 (2014)

    CAS  Google Scholar 

  24. Y. Zhang, X. Zhang, B. Quan, G. Ji, X. Liang, W. Liu, Y. Du, A facile self-template strategy for synthesizing 1D porous Ni@C nanorods towards efficient microwave absorption. Nanotechnology 28(11), 115704 (2017)

    Google Scholar 

  25. Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16(5), 3321–3328 (2016)

    CAS  Google Scholar 

  26. Y. Liu, H. Teng, H. Hou, T. You, Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens. Bioelectron. 24(11), 3329–3334 (2009)

    CAS  Google Scholar 

  27. S. Wang, L. Jiang, Definition of superhydrophobic states. Adv. Mater. 19(21), 3423–3424 (2007)

    CAS  Google Scholar 

  28. Y. Li, Y. Zhao, X. Lu, Y. Zhu, L. Jiang, Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 9(7), 2034–2045 (2016)

    CAS  Google Scholar 

  29. Y. Zhu, J. Zhang, J. Zhai, Y. Zheng, L. Feng, L. Jiang, Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. Chemphyschem 7, 336–341 (2006)

    CAS  Google Scholar 

  30. S. Zhang, Q. Shi, C. Christodoulatos, X. Meng, Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: batch, spectroscopic, and modeling study. Chemosphere 233, 405–413 (2019)

    CAS  Google Scholar 

  31. Z. Liu, R. Liu, Y. Yi, W. Han, F. Kong, S. Wang, Photocatalytic degradation of dyes over a xylan/PVA/TiO2 composite under visible light irradiation. Carbohydr. Polym. 223, 115081 (2019)

    CAS  Google Scholar 

  32. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U. De Gomes, M. Maaza, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram. Int. 42(7), 8385–8394 (2016)

    CAS  Google Scholar 

  33. Y. Zhang, T. Gao, S. Xie, B. Dai, L. Fu, Y. Gao, Y. Chen, M. Liu, Z. Liu, Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: a scanning tunneling microscopy study. Nano Res. 5(6), 402–411 (2012)

    CAS  Google Scholar 

  34. T. Liu, X.B. Xie, Y. Pang, S. Kobayashi, Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material. J. Mater. Chem. C 4(8), 1727–1735 (2016)

    CAS  Google Scholar 

  35. N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, Z. Liu, Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 11(1), 297–303 (2011)

    CAS  Google Scholar 

  36. L.L. Patera, F. Bianchini, C. Africh, C. Dri, G. Soldano, M.M. Mariscal, M. Peressi, G. Comelli, Real-time imaging of adatom-promoted graphene growth on nickel. Science 359(6381), 1243–1246 (2018)

    CAS  Google Scholar 

  37. N.A.M. Barakat, B. Kim, H.Y. Kim, Production of smooth and pure nickel metal nanofibers by the electrospinning technique: nanofibers possess splendid magnetic properties. J. Phys. Chem. C 113(2), 531–536 (2009)

    CAS  Google Scholar 

  38. J.F. Löffler, J.P. Meier, B. Doudin, J.-P. Ansermet, W. Wagner, Random and exchange anisotropy in consolidated nanostructured Fe and Ni: role of grain size and trace oxides on the magnetic properties. Phys. Rev. B 57(5), 2915–2924 (1998)

    Google Scholar 

  39. J. Gong, L.L. Wang, Y. Liu, J.H. Yang, Z.G. Zong, Structural and magnetic properties of hcp and fcc Ni nanoparticles. J. Alloys Compd. 457(1–2), 6–9 (2008)

    CAS  Google Scholar 

  40. T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, X. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 22(30), 15190 (2012)

    CAS  Google Scholar 

  41. Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6(15), 12997–13006 (2014)

    CAS  Google Scholar 

  42. V.A. Markel, Can the imaginary part of permeability be negative? Phys. Rev. E 78(2), 026608 (2008)

    Google Scholar 

  43. M. Maglione, M.A. Subramanian, Dielectric and polarization experiments in high loss dielectrics: a word of caution. Appl. Phys. Lett. 93(3), 032902 (2008)

    Google Scholar 

  44. F. Wang, Y. Sun, D. Li, B. Zhong, Z. Wu, S. Zuo, D. Yan, R. Zhuo, J. Feng, P. Yan, Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 134, 264–273 (2018)

    CAS  Google Scholar 

  45. Z.L. Hou, M. Zhang, L.B. Kong, H.M. Fang, Z.J. Li, H.F. Zhou, H.B. Jin, M.S. Cao, Microwave permittivity and permeability experiments in high-loss dielectrics: caution with implicit Fabry–Perot resonance for negative imaginary permeability. Appl. Phys. Lett. 103(16), 162905 (2013)

    Google Scholar 

  46. T. Wu, Y. Liu, X. Zeng, T. Cui, Y. Zhao, Y. Li, G. Tong, Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 8(11), 7370–7380 (2016)

    CAS  Google Scholar 

  47. H. Wang, L. Xiang, W. Wei, J. An, J. He, C. Gong, Y. Hou, Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 9(48), 42102–42110 (2017)

    CAS  Google Scholar 

  48. M. Qiao, X. Lei, Y. Ma, L. Tian, W. Wang, K. Su, Q. Zhang, Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core–shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloys Compd. 693, 432–439 (2017)

    CAS  Google Scholar 

  49. A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69(11), 7762–7764 (1991)

    Google Scholar 

  50. H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017)

    CAS  Google Scholar 

  51. J. Kuang, P. Jiang, F. Ran, W. Cao, Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. J. Alloys Compd. 687, 227–231 (2016)

    CAS  Google Scholar 

  52. X. Zheng, J. Feng, Y. Zong, H. Miao, X. Hu, J. Bai, X. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3(17), 4452–4463 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51363015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wei, Y., Li, J. et al. Fabrication of microwave absorbing Ni/NiO/C nanofibers with robust superhydrophobic properties by electrospinning. J Mater Sci: Mater Electron 31, 226–238 (2020). https://doi.org/10.1007/s10854-019-02462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02462-y

Navigation