Skip to main content
Log in

Enhancing the dielectric properties of (Ba0.85Ca0.15)(SnxZr0.10−xTi0.90)O3 lead-free ceramics by stannum substitution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A small amount of Sn4+ content has a great influence in the lowering the Curie temperature (Tc), enhancing the dielectric properties and reducing the piezoelectric performance of (Ba0.85Ca0.15)(SnxZr0.1−xTi0.90)O3 (x = 0, 0.025, 0.05, 0.075, 0.10) ceramics, and this reaction has been systematically studied. The samples were synthesized by using the conventional solid-state route and then sintered at 1450 °C. They were characterized by X-ray diffraction analysis, ac impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray and piezoelectric constant measurements. All the samples exhibited a tetragonal structure. The results showed that the dielectric properties increase as the Sn content increases, and Tc was lowered from 95 to 59 °C. The Tc shifted to a lower temperature due to the smaller ionic radii of Sn4+ being replaced by Zr4+ at B-sites and a decrease in the Ti–O bonds, thus weakening its interaction within the TiO6 octahedral. It was discovered that the tolerance factor becomes larger, and thus the deviation of the Sn4+ ions at B-sites are much easier, with enough space and enhanced ferroelectricity and dielectric properties. However, its piezoelectric properties were decreased since the tetragonality of the samples decreased with the addition of Sn4+ contents. The c-axis becomes shorter and reduces the dipole moment of the TiO6 octahedral. Moreover, the activation energies for Sn-doped BCZT ceramics associated with the ionization of oxygen vacancies create difficulties in electric domain rotation, thus reducing the polarizability of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Zheng, K.X. Song, H.B. Qin, L. Zheng, L.M. Zheng, Piezoelectric activities and domain patterns of orthorhombic Ba(Zr, Ti)O3 ceramics. Curr. Appl. Phys. 13(6), 1064–1068 (2013)

    Article  CAS  Google Scholar 

  2. F.A. Ismail, R.A.M. Osman, M.S. Idris, N.A.M. Ahmad Hambali, Structure and electrical characteristics of BaTiO3 and Ba0.99Er0.01TiO3 Ceramics. Solid State Phenom. 280, 127–133 (2018)

    Article  Google Scholar 

  3. W. Liu, J. Wang, X. Ke, S. Li, Large piezoelectric performance of Sn doped BaTiO3 ceramics deviating from quadruple point. J. Alloys Compd. 712, 1–6 (2017)

    Article  CAS  Google Scholar 

  4. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Dielectric and piezoelectric properties of Ba(ZrxTi1−x)O3 lead-free ceramics. Braz. J. Phys. 40(3), 353–356 (2010)

    Article  CAS  Google Scholar 

  5. W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  Google Scholar 

  6. Y. Zhang, J. Glaum, C. Groh, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, Correlation between piezoelectric properties and phase coexistence in (Ba, Ca)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 97(9), 2885–2891 (2014)

    Article  CAS  Google Scholar 

  7. J. Gao, X. Hu, Y. Wang, Y. Liu, L. Zhang, X. Ke, L. Zhong, H. Zhao, X. Ren, Understanding the mechanism of large dielectric response in Pb-free (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. Acta Mater. 125, 177–186 (2017)

    Article  CAS  Google Scholar 

  8. C.X. Li, B. Yang, S.T. Zhang, R. Zhang, W.W. Cao, Effects of sintering temperature and poling conditions on the electrical properties of Ba0.70Ca0.30TiO3 diphasic piezoelectric ceramics. Ceram. Int. 39(3), 2967–2973 (2013)

    Article  CAS  Google Scholar 

  9. X. Wang, J. Liu, P. Liang, Z. Yang, Higher curie temperature and enhanced piezoelectrical properties in (Ba0.85Ca0.15−xPbx)(Zr0.1Ti0.90− ySny)O3 ceramics. J. Electron. Mater. 47(10), 6121–6127 (2018)

    Article  CAS  Google Scholar 

  10. F. Benabdallah, C. Elissalde, U.C.C. Seu, D. Michau, A. Poulon-Quintin, M. Gayot, P. Garreta, H. Khemakhem, M. Maglione, Structure–microstructure–property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering. J. Eur. Ceram. Soc. 35(15), 4153–4161 (2015)

    Article  CAS  Google Scholar 

  11. K.N.D.K. Muhsen, R.A.M. Osman, M.S. Idris, Giant anomalous dielectric behaviour of BaSnO 3 at high temperature. J. Mater. Sci.: Mater. Electron. 30(8), 7514–7523 (2019)

    CAS  Google Scholar 

  12. M.S. Yoon, S.C. Ur, Effects of A-site Ca and B-site Zr substitution on dielectric properties and microstructure in tin-doped BaTiO3–CaTiO3 composites. Ceram. Int. 34(8), 1941–1948 (2008)

    Article  CAS  Google Scholar 

  13. H. Wang, J. Wu, Phase transition, microstructure, and electrical properties of Ca, Zr, and Sn-modified BaTiO3 lead-free ceramics. J. Alloys Compd. 615, 969–974 (2014)

    Article  CAS  Google Scholar 

  14. B.G. Baraskar, P.S. Kadhane, T.C. Darvade, A.R. James, R.C. Kambale, BaTiO3-based lead-free electroceramics with their ferroelectric and piezoelectric properties tuned by Ca2+, Sn4+ and Zr4+ substitution useful for electrostrictive device application, in Ferroelectrics and their applications, ed. H. Irzaman, R.P. Jenie (IntechOpen, London, 2018)

    Google Scholar 

  15. S. Patel, P. Sharma, R. Vaish, Enhanced electrocaloric effect in Ba0.85Ca0.15Zr0.1Ti0.9–xSnxO3 ferroelectric ceramics. Phase Trans. 89(11), 1062–1073 (2016)

    Article  CAS  Google Scholar 

  16. B.A. Topas, V4: General profile and structure analysis software for powder diffraction data. User’s manual (Bruker AXS, Karlsruhe, 2008)

    Google Scholar 

  17. M.S. Idris, R.A.M. Osman, Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package. Adv. Mater. Res. 795, 479–482 (2013)

    Article  Google Scholar 

  18. T.Q. Tan, R.A.M. Osman, M.V. Reddy, Z.A.Z. Jamal, M.S. Idris, Structure and electrical studies of olivine LiNi1−x(Co0.5Mn0.5)xPO4 (0 < x < 1) at high temperature. Ionics 24, 3733–3744 (2017)

    Article  Google Scholar 

  19. T.Q. Tan, R.A.M. Osman, M.V. Reddy, Z.A.Z. Jamal, M.S. Idris, Structure and electrical properties of solid solution Li[Ni0.5Mn0.5]1−xCoxPO4 (1 ≥ x ≥ 0). Mater. Sci. Eng. B 241, 55–65 (2019)

    Article  CAS  Google Scholar 

  20. Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, X. Ren, Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. Europhys. Lett. 98(2), 27008 (2012)

    Article  Google Scholar 

  21. X. Chao, J. Wang, L. Wei, R. Gou, Z. Yang, Electrical properties and low temperature sintering of BiAlO3 doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 26(10), 7331–7340 (2015)

    Article  CAS  Google Scholar 

  22. F. Zeng, Q. Liu, E. Cai, Y. Wang, A. Xue, S. Peng, S. Zhou, Y. Zhu, Relaxor phenomenon of (1−x)(Ba0.85Ca0.15)(Zr0.09Ti0.91)O3−xTa + 0.6 wt% Li2CO3 ceramics with high piezoelectric constant and Curie temperature. Ceram. Int. 44(9), 10677–10684 (2018)

    Article  CAS  Google Scholar 

  23. J. Wu, D. Xiao, B. Wu, W. Wu, J. Zhu, Z. Yang, J. Wang, Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics. Mater. Res. Bull. 47(5), 1281–1284 (2012)

    Article  CAS  Google Scholar 

  24. J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M. Siu Li, E. Longo, Structure and optical properties of [Ba1–xY2x/3](Zr0.25Ti0.75)O3 powders. Solid State Sci. 12(7), 1160–1167 (2010)

    Article  CAS  Google Scholar 

  25. F. Guo, W. Cai, R. Gao, C. Fu, G. Chen, X. Deng, Z. Wang, Q. Zhang, Microstructure, Enhanced Relaxor-Like Behavior and Electric Properties of (Ba0.85Ca0.15)(Zr0.1− xHfxTi0.9)O3 Ceramics. J. Electron. Mater. 48(5), 3239–3247 (2019)

    Article  CAS  Google Scholar 

  26. H. Msouni, A. Tachafine, M. El Aatmani, D. Fasquelle, J.C. Carru, M. El Hammioui, M. Rguiti, A. Zegzouti, A. Outzourhit, M. Daoud, Structural, dielectric and piezoelectric study of Ca-, Zr-modified BaTiO3 lead-free ceramics. Bull. Mater. Sci. 40(5), 925–931 (2017)

    Article  CAS  Google Scholar 

  27. A.R. West, D.C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1(1), 65–71 (1997)

    Article  CAS  Google Scholar 

  28. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)

    Article  CAS  Google Scholar 

  29. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, Sequence of structural transitions and electrocaloric properties in (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics. J. Alloys Compd. 713, 164–179 (2017)

    Article  CAS  Google Scholar 

  30. P. Mishra, P. Kumar, Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics. J. Alloys Compd. 545, 210–215 (2012)

    Article  CAS  Google Scholar 

  31. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, A comparative study of structural and electrical properties in lead-free BCZT ceramics: influence of the synthesis method. Acta Mater. 155, 331–342 (2018)

    Article  CAS  Google Scholar 

  32. D.J. Shin, J. Kim, J.H. Koh, Piezoelectric properties of (1−x) BZT−xBCT system for energy harvesting applications. J. Eur. Ceram. Soc. 38(13), 4395–4403 (2018)

    Article  CAS  Google Scholar 

  33. A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, Novel high capacitance materials:-BaTiO3: La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004)

    Article  CAS  Google Scholar 

  34. A.R. West, Solid state chemistry and its applications (Wiley, Chichester, 2014), p. 438

    Google Scholar 

  35. Y. Lai, Y. Zeng, X. Tang, H. Zhang, J. Han, Z. Huang, H. Su, Effects of CaO–B2O3–SiO2 glass additive on the microstructure and electrical properties of BCZT lead-free ceramic. Ceram. Int. 42(11), 12694–12700 (2016)

    Article  CAS  Google Scholar 

  36. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)

    Article  CAS  Google Scholar 

  37. C. Chen, H. Zhuang, X. Zhu, D. Zhang, K. Zhou, H. Yan, Effect of Ca substitution sites on dielectric properties and relaxor behavior of Ca doped barium strontium titanate ceramics. J. Mater. Sci.: Mater. Electron. 26(4), 2486–2492 (2015)

    CAS  Google Scholar 

  38. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  39. N. Wang, B.P. Zhang, J. Ma, L. Zhao, J. Pei, Phase structure and electrical properties of Sn and Zr modified BaTiO3 lead-free ceramics. Ceram. Int. 43(1), 641–649 (2017)

    Article  CAS  Google Scholar 

  40. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb (Fe1∕ 2Nb1∕ 2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97(8), 084107 (2005)

    Article  Google Scholar 

  41. Huang, X. Y., Gao, C. H., Zhu, Z. W., Pan, L., & Chen, Z. G. (2012, November). Influence of Co2O3 doped amount on the properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. In 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), IEEE, pp. 9–12

Download references

Acknowledgement

This work was financially supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme 2018 (FRGS Grant No.: FRGS/1/2018/STG07/UNIMAP/02/4).

Author information

Authors and Affiliations

Authors

Contributions

KNDKM conducted the experimental work and wrote the manuscript, RAMO interpreted the data and designed the experimental work, MSI interpreted and analyzed the XRD data, MHHJ interpreted the piezoelectric measurement data and NHBJ supervised the experimental work using the piezoelectric tester.

Corresponding author

Correspondence to Rozana Aina Maulat Osman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhsen, K.N.D.K., Osman, R.A.M., Idris, M.S. et al. Enhancing the dielectric properties of (Ba0.85Ca0.15)(SnxZr0.10−xTi0.90)O3 lead-free ceramics by stannum substitution. J Mater Sci: Mater Electron 30, 20654–20664 (2019). https://doi.org/10.1007/s10854-019-02431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02431-5

Navigation