Skip to main content
Log in

Polymer/magnesia nanofiber composite sheets with anisotropic high thermal conductivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of an electronic product depends on how efficiently it can dissipate the heat of its parts. As a result, intensive ongoing research seeks to improve the thermal conductivity of polymeric materials. In this study, we investigate magnesia nanofibers as thermal conductive filler in the resin and compared them to conventional spherical filler. Magnesia nanofiber mats were fabricated by electrospinning a solution of polyvinyl alcohol and magnesium ethoxide mixtures; they were then impregnated with resins to obtain a composite sheet. We assessed the thermal conductivity of the composite sheet. The resin sheet with aligned magnesia nanofibers content (49 vol%) had high thermal conductivity (12.9 W/mK) in the direction parallel to the aligned magnesia nanofibers. The conductivity increased in proportion to magnesia nanofiber content. In addition, the magnesia nanofiber composite sheet showed anisotropic thermal conductivity derived from the fiber direction and had electrical insulation (7.7 × 1012 Ω/□), and flexibility. These electrically insulating sheets with anisotropy in thermal conductivity would be useful in designing effective heat removal paths in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Tanaka, S. Ogata, R. Kobayashi, T. Tamura, M. Kitsunezuka, A. Shinma, J. Appl. Phys. 114, 193512 (2013). https://doi.org/10.1063/1.4831946

    Article  CAS  Google Scholar 

  2. E.N. Galashov, A.A. Yusuf, E.M. Mandrik, V.V. Atuchun, Int. J. Manuf. Technol. 86, 475–478 (2016). https://doi.org/10.1007/s00170-015-8186-8

    Article  Google Scholar 

  3. Y. Agari, A. Ueda, M. Tanaka, S. Nagai, J. Appl. Polym. Sci. 40(56), 929–941 (1990). https://doi.org/10.1002/app.1990.070400526

    Article  CAS  Google Scholar 

  4. S. Yu, P. Hing, X. Hu, Composites A 33(2), 289–292 (2002). https://doi.org/10.1016/S1359-835X(01)00107-5

    Article  Google Scholar 

  5. Y. Agari, A. Ueda, S. Nagai, J. Appl. Polym. Sci. 49(9), 1625–1634 (1993). https://doi.org/10.1002/app.1993.070490914

    Article  CAS  Google Scholar 

  6. W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Mater. Res. Bull. 42(10), 1863–1873 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047

    Article  CAS  Google Scholar 

  7. M. Harada, N. Hamaura, M. Ochi, Y. Agari, Composites B 55, 306–313 (2013). https://doi.org/10.1016/j.compositesb.2013.06.031

    Article  CAS  Google Scholar 

  8. D.S. Muratov, D.V. Kuznetsov, I.A. Ilinykh, I.N. Mazov, A.A. Stepashkin, V.V. Tcherdyntsev, J. Alloys Compd. 586, S451–S454 (2014). https://doi.org/10.1016/j.jallcom.2012.11.142

    Article  CAS  Google Scholar 

  9. K. Kim, M. Kim, Y. Hwang, J. Kim, Ceram. Int. 40(1), 2047–2056 (2014). https://doi.org/10.1016/j.ceramint.2013.07.117

    Article  CAS  Google Scholar 

  10. S. Choi, J. Kim, Composites B 51, 140–147 (2013). https://doi.org/10.1016/j.compositesb.2013.03.002

    Article  CAS  Google Scholar 

  11. C. Shao, H. Guan, Y. Liu, R. Mu, J. Mater. Sci. 4, 3821–3824 (2006). https://doi.org/10.1007/s10853-005-5623-3

    Article  CAS  Google Scholar 

  12. C. Xu, K. Yuan, X. Jin, Z. Yu, L. Zheng, Y. Lü, X. Wang, L. Zhu, G. Zhang, D. Xu, Ceram. Int. 43, 16210–16216 (2017). https://doi.org/10.1016/j.ceramint.2017.08.199

    Article  CAS  Google Scholar 

  13. K. Nakane, S. Ichikawa, S. Gao, M. Seto, S. Irie, S. Yonezawa, N. Ogata, Sen’i Gakkaishi 71(1), 67–71 (2015). https://doi.org/10.2115/fiber.71.1

    Article  CAS  Google Scholar 

  14. A. Ohgoshi, S. Gao, K. Takahashi, K. Nakane, J. Text. Eng. 65(4), 67–72 (2019)

    Google Scholar 

  15. T. Lopez, I. Garcia-Cruz, R. Gomez, J. Catal. 127, 75–85 (1991). https://doi.org/10.1016/0021-9517(91)90210-U

    Article  CAS  Google Scholar 

  16. D.A.G. Bruggeman, Annal. der Phys. 416, 636–664 (1935). https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public or not-for-profit sectors, and is supported financially by Nissan Chemical Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nakane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohgoshi, A., Takahashi, K. & Nakane, K. Polymer/magnesia nanofiber composite sheets with anisotropic high thermal conductivity. J Mater Sci: Mater Electron 30, 20566–20573 (2019). https://doi.org/10.1007/s10854-019-02421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02421-7

Navigation