Skip to main content
Log in

In situ synthesis of core–shell nanocomposites based on polyaniline/Ni–Zn ferrite and enhanced microwave absorbing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Core–shell nanocomposites based on polyaniline/Ni–Zn ferrite (PANI-NZFO) were successfully fabricated by a method of in situ oxidative polymerization, and the aggregation of Ni–Zn ferrite (NZFO) nanospheres can be controlled through adjusting the weight ratio of NZFO/aniline (NZFO/ANI). As a result, the sample with NZFO/ANI weight ratio of 3:100 exhibits the optimal reflection loss (RL) value of − 46.5 dB. Particularly, PANI-NZFO present excellent dielectric loss (0.18 < tanδe < 0.35) due to the coating of PANI. TEM images show the core–shell structure of PANI-NZFO and the dispersibility of NZFO is favorable. In order to avoid the NZFO nanospheres from being damaged by the acid, their surface was firstly grafted with amidogen (–NH2). Simultaneously, it is clear that the NZFO nanospheres haven’t been destroyed during the process of coating, which has been confirmed by XRD patterns, and a formation mechanism was designed. FTIR spectra indicate that the coating observed in TEM images is exactly polyaniline (PANI). The effects of NZFO/ANI weight ratio (or conductivity), volume fraction (of PANI-NZFO/paraffin containing PANI-NZFO) and layer thickness on microwave absorbing properties were investigated at room temperature in the frequency range of 0–18 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, J. Phys. Chem. C 116, 13403 (2012)

    CAS  Google Scholar 

  2. A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandrad, S.K. Dhawan, J. Mater. Chem. A 2, 3581 (2014)

    CAS  Google Scholar 

  3. D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.-G. Ren, J.-H. Wang, Z.-M. Li, Adv. Funct. Mater. 25, 559 (2015)

    CAS  Google Scholar 

  4. X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, Y. Du, Nanoscale 7, 12932 (2015)

    CAS  Google Scholar 

  5. X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4, 6816 (2016)

    CAS  Google Scholar 

  6. J. Abraham, P. Mohammed Arif, P. Xavier, S. Bose, S.C. George, N. Kalarikkal, S. Thomas, Polymer 112, 102 (2017)

    CAS  Google Scholar 

  7. M.A. Poothanari, J. Abraham, N. Kalarikkal, S. Thomas, Ind. Eng. Chem. Res. 57, 4287 (2018)

    CAS  Google Scholar 

  8. I. Arief, S. Biswas, S. Bose, Nano Struct. Nano Objects 11, 94 (2017)

    CAS  Google Scholar 

  9. X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, J. Mater. Chem. A 3, 5535 (2015)

    CAS  Google Scholar 

  10. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101 (2016)

    CAS  Google Scholar 

  11. Q. Zeng, X. Xiong, P. Chen, Q. Yu, Q. Wang, R. Wang, H. Chu, J. Mater. Chem. C 4, 10518 (2016)

    CAS  Google Scholar 

  12. H. Zhang, X. Zhong, J.-J. Xu, H.-Y. Chen, Langmuir 24, 13748 (2008)

    CAS  Google Scholar 

  13. W. Zhou, X. Hu, X. Bai, S. Zhou, C. Sun, J. Yan, P. Chen, ACS Appl. Mater. Interfaces 3, 3839 (2011)

    CAS  Google Scholar 

  14. M. Qiao, X. Lei, Y. Ma, L. Tian, K.H. Su, Q. Zhang, Ind. Eng. Chem. Res. 55, 6263 (2016)

    CAS  Google Scholar 

  15. Q. Li, Y. Li, X. Li, S. Chen, S. Zhang, J. Wang, C. Hou, J. Alloys Compd. 608, 35 (2014)

    CAS  Google Scholar 

  16. A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan, ACS Appl. Mater. Interfaces 2, 927 (2010)

    CAS  Google Scholar 

  17. U. Riaz, S.M. Ashraf, R. Raza, K. Kohli, J. Kashyap, Ind. Eng. Chem. Res. 55, 6300 (2016)

    CAS  Google Scholar 

  18. L. Li, H. Liu, Y. Wang, J. Jiang, F. Xu, J. Colloid Interface Sci. 321, 265 (2008)

    CAS  Google Scholar 

  19. J. Fei, Y. Cui, X. Yan, Y. Yang, K. Wang, J. Li, ACS Nano 3, 3714 (2009)

    CAS  Google Scholar 

  20. Y. Zuo, Z. Yao, J. Zhou, X. Zhang, Y. Ning, J. Mater. Sci.: Mater. Electron. 29, 922 (2018)

    CAS  Google Scholar 

  21. K. Manna, S.K. Srivastava, ACS Sustainable Chem. Eng. 5, 10710 (2017)

    CAS  Google Scholar 

  22. P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, J. Mater. Chem. 22, 17485 (2012)

    CAS  Google Scholar 

  23. M.A. Dar, R.K. Kotnala, V. Verma, J. Shah, W.A. Siddiqui, M. Alam, J. Phys. Chem. C 116, 5277 (2012)

    CAS  Google Scholar 

  24. L. Du, Y. Du, Y. Li, J. Wang, C. Wang, X. Wang, P. Xu, X. Han, J. Phys. Chem. C 114, 19600 (2010)

    CAS  Google Scholar 

  25. N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, J. Am. Chem. Soc. 129, 12374 (2007)

    CAS  Google Scholar 

  26. N. Bao, L. Shen, Y.-H. Wang, J. Ma, D. Mazumdar, A. Gupta, J. Am. Chem. Soc. 131, 12900 (2009)

    CAS  Google Scholar 

  27. C.R. Vestal, Z.J. Zhang, Nnao Lett. 3, 1739 (2003)

    CAS  Google Scholar 

  28. J. Hao, W. Yang, Z. Zhang, S. Pan, B. Lu, X. Ke, B. Zhang, J. Tang, Nanoscale 5, 3078 (2013)

    CAS  Google Scholar 

  29. K. Kirchberg, A. Becker, A. Bloesser, T. Weller, J. Timm, C. Suchomski, R. Marschall, J. Phys. Chem. C 121, 27126 (2017)

    CAS  Google Scholar 

  30. S. Kumar, V. Singh, S. Aggarwal, U.K. Mandal, R.K. Kotnala, J. Phys. Chem. C 114, 6272 (2010)

    CAS  Google Scholar 

  31. D.-H. Nam, M.-J. Kim, S.-J., I.-S. Song, H.-S. Kwon, J. Mater. Chem. A 1, 8061 (2013)

    CAS  Google Scholar 

  32. J. Zang, X. Li, J. Mater. Chem. 21, 10965 (2011)

    CAS  Google Scholar 

  33. D.A. Gopakumar, A.R. Pai, Y.B. Pottathara, D. Pasquini, L. Carlos de Morais, M. Luke, N. Kalarikkal, Y. Grohens, S. Thomas, ACS Appl. Mater. Interfaces 10, 20032 (2018)

    CAS  Google Scholar 

  34. P. Liu, L. Li, Z. Yao, J. Zhou, M. Du, T. Yao, J. Mater. Sci.: Mater. Electron. 27, 7776 (2016)

    CAS  Google Scholar 

  35. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, ACS Appl. Mater. Interfaces 7, 20090 (2015)

    CAS  Google Scholar 

  36. J.M. Velazquez, A.V. Gaikwad, T.K. Rout, J. Rzayev, S. Banerjee, ACS Appl. Mater. Interfaces 3, 1238 (2011)

    CAS  Google Scholar 

  37. R.V. Lakshmi, P. Bera, R.P.S. Chakradhar, B. Choudhury, S.P. Pawar, S. Bose, R.U. Nair, H.C. Barshilia, Phys. Chem. Chem. Phys. 21, 5068 (2019)

    CAS  Google Scholar 

  38. F. Hong, C. Yan, Y. Si, J. He, J. Yu, B. Ding, ACS Appl. Mater. Interfaces 7, 20200 (2015)

    CAS  Google Scholar 

  39. Q.-F. Li, X. Du, S. Chen, S. Zhang, J. Mater. Sci.: Mater. Electron. 29, 3286 (2018)

    CAS  Google Scholar 

  40. L. Guo, G.-L. Pei, T.-J. Wang, Z.-W. Wang, Y. Jin, Colloid. Surf. A 293, 58 (2007)

    CAS  Google Scholar 

  41. X. Lu, H. Mao, W. Zhang, Polym. Compos. 30, 847 (2009)

    CAS  Google Scholar 

  42. Q. Yang, K. Tang, C. Wang, Y. Qian, S. Zhang, J. Phys. Chem. B 106, 9227 (2002)

    CAS  Google Scholar 

  43. N. Li, G.-W. Huang, Y. Li, H.-M. Xiao, Q.-P. Feng, N. Hu, S.-Y. Fu, ACS Appl. Mater. Interfaces 9, 2973 (2017)

    CAS  Google Scholar 

  44. B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8, 28917 (2016)

    CAS  Google Scholar 

  45. X. Wang, H. Yan, R. Xue, S. Qi, J. Mater. Sci.: Mater. Electron. 28, 519 (2017)

    Google Scholar 

  46. R. Rohini, S. Bose, Nano-Structures & Nano-Objects 12, 130 (2017)

    CAS  Google Scholar 

  47. C. Wang, X. Han, P. Xu, J. Wang, Y. Du, X. Wang, W. Qin, T. Zhang, J. Phys. Chem. C 114, 3196 (2010)

    CAS  Google Scholar 

  48. R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401 (2004)

    CAS  Google Scholar 

  49. P. Xu, X. Han, C. Wang, H. Zhao, J. Wang, X. Wang, B. Zhang, J. Phys. Chem. B 112, 2775 (2008)

    CAS  Google Scholar 

  50. Y. Lin, J. Wang, H. Yang, L. Wang, J. Mater. Sci.: Mater. Electron. 28, 17968 (2017)

    CAS  Google Scholar 

  51. J. Zhu, M. Ye, A. Han, J. Mater. Sci.: Mater. Electron. 28, 13350 (2017)

    CAS  Google Scholar 

  52. Y. Ma, Y. Zhou, Z. Xiong, Y. Sun, C. Qi, Y. Zhang, Y. Liu, J. Mater. Sci.: Mater. Electron. 30, 4819 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial supports from the National Natural Science Foundation of China (Grant Nos. 51363015; 51501042), and thank the measurements supports from the Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education (Lanzhou University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyan Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, X., Zhang, Z. et al. In situ synthesis of core–shell nanocomposites based on polyaniline/Ni–Zn ferrite and enhanced microwave absorbing properties. J Mater Sci: Mater Electron 30, 20515–20524 (2019). https://doi.org/10.1007/s10854-019-02410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02410-w

Navigation