Skip to main content
Log in

Nano-topological luminophor Y2O3:Eu3+ + Ag with concurrent photoluminescence and electroluminescence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A nano-topological luminophor model of Y2O3:Eu3+ + Ag was designed based on the improvement of radiation transition rate of the illuminating center by surface plasmon excitation. Homogeneous Y2O3:Eu3+ + AgCl nanosheets were synthesized through a facile non-aqueous solvothermal method and subsequent heat treatment. By adding AgNO3 in the thermal reaction of the solvent, Y2O3:Eu3+ + AgCl was generated in the preparation process. Then the AgCl was decomposed into elemental Ag to obtain a nano-topological structure of Y2O3:Eu3+ + Ag after ultraviolet treatment. The size of nano-topological luminophor Y2O3:Eu3+ + Ag reached 20 × 20 nm with a thickness of 2 nm, and it emitted red light with a wavelength of 613 nm under the excitation of 245 nm ultraviolet light and electric field. The photoluminescence (PL) properties of the nano-topological luminophor Y2O3:Eu3+ + Ag was approximately about 50% higher than that of Y2O3:Eu3+ under the same conditions, and the electroluminescence (EL) properties was increased by about 200%. It is thought that by reducing the light response threshold of the nano-topological luminophor, the intensity of both PL and EL can be improved simultaneously. This nano-topological luminophor Y2O3:Eu3+ + Ag provides a new way to design phosphors with high luminescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Takeshita, Y. Takebayashi, H. Nakamura, S. Yoda, Chem. Mater. 28, 8466 (2016)

    CAS  Google Scholar 

  2. S. Gai, C. Li, P. Yang, Chem. Rev. 114, 2343 (2014)

    CAS  Google Scholar 

  3. M. Wang, M. Li, A. Yu, J. Wu, C. Mao, ACS Appl. Mater. Interfaces 7, 28110–28115 (2015)

    CAS  Google Scholar 

  4. H. Dong, S.R. Du, X.Y. Zheng, G.M. Lyu, L.D. Sun, L.D. Li, P.Z. Zhang, C. Zhang, C.H. Yan, Chem. Rev. 115, 10725 (2015)

    CAS  Google Scholar 

  5. J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Chem. Rev. 115, 395 (2015)

    CAS  Google Scholar 

  6. P.S. Peijzel, A. Meijerink, R.T. Wegh, M.F. Reid, G.W. Burdick, J. Solid State Chem. 178, 448 (2005)

    CAS  Google Scholar 

  7. N. Ogugua, H.C. Swart, O.M. Ntwaeaborwa, Sens. Actuators B 250, 285 (2017)

    CAS  Google Scholar 

  8. A. Yánez-González, B. Van Wachem, S. Skinner, F. Beyrau, A. Heyes, Mater. Des. 108, 145 (2016)

    Google Scholar 

  9. L.J. Yin, J. Dong, Y.P. Wang, B. Zhang, Z.Y. Zhou, J. Phys. Chem. C 2016(120), 2355 (2016)

    Google Scholar 

  10. G.K. Das, J. Phys. Chem. C 112, 11211 (2008)

    CAS  Google Scholar 

  11. P. Zhu, H. Zhu, W. Qin, B.H. Dantas, W. Sun, C.K. Tan, J. Appl. Phys. 119, 454 (2016)

    Google Scholar 

  12. F. Kang, Y. Zhang, M. Peng, Inorg. Chem. 54, 1462 (2015)

    CAS  Google Scholar 

  13. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Nature 463, 1061 (2010)

    CAS  Google Scholar 

  14. S. Ranjan, M.K.G. Jayakumar, Y. Zhang, Nanomedicine 10, 1477 (2015)

    CAS  Google Scholar 

  15. W. Ren, S. Wen, S.A. Tawfik, Q.P. Su, G. Lin, L.A. Ju, M.J. Ford, H. Ghodke, M. Antoine, V. Oijen, D. Jin, Chem. Sci. 9, 4352 (2018)

    CAS  Google Scholar 

  16. W. Guan, W. Zhou, J. Lu, C. Lu, Soc. Rev. 44, 6981 (2015)

    CAS  Google Scholar 

  17. M.A. Lephoto, K.G. Tshabalala, S.J. Motloung, I. Ahemen, O.M. Ntwaeaborwa, Physica B 10, 1016 (2017)

    Google Scholar 

  18. G. Chen, W. Qi, Y. Li, C. Yang, X. Zhao, J. Mater. Sci. Mater. Electron. 27, 5628 (2016)

    CAS  Google Scholar 

  19. J. Li, G.J. Li, Q. Zhu, X. Sun, Mater. Des. 112, 207 (2016)

    CAS  Google Scholar 

  20. S.H. Lee, J.I. Choi, Y.J. Kim, J.K. Han, J. Ha, E. Novitskaya, J.B. Talbot, J. McKittrick, Mater. Charact. 103, 162 (2015)

    CAS  Google Scholar 

  21. T. Chan, C.C. Kang, R.S. Liu, L. Chen, X. Liu, J.J. Ding, J. Bao, C. Gao, J. Comb. Chem. 9, 343 (2007)

    CAS  Google Scholar 

  22. J. Kaszewski, M.M. Godlewski, B.S. Witkowski, A. Słońska, E. Wolska-Kornio, Opt. Mater. 59, 157 (2016)

    CAS  Google Scholar 

  23. G. Yuan, M. Li, M. Yu, C. Tian, G. Wang, H. Fu, Sci. Rep. 6, 37133 (2016)

    CAS  Google Scholar 

  24. S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, T. Sannomiya, N. Tanaka, D. Onoshima, H. Yukawa, Y. Baba, M. Ashida, J. Miyake, T. Araki, M. Hashimoto, Sci. Rep. 6, 25950 (2016)

    CAS  Google Scholar 

  25. S. Tao, Y. Li, G. Chen, X. Zhao, J. Supercond. Nov. Magn. 30, 1405 (2017)

    CAS  Google Scholar 

  26. Z. Zhang, S. Tao, G. Chen, X. Zhao, J. Supercond. Nov. Magn. 29, 1159 (2016)

    CAS  Google Scholar 

  27. G. Chen, S. Tao, C. Yang, X. Zhao, J. Mater. Sci. Mater. Electron. 26, 5970 (2015)

    CAS  Google Scholar 

  28. C. Wu, W. Qin, G. Qin, D. Zhao, J. Zhang, S. Huang, Appl. Phys. Lett. 82, 520 (2003)

    CAS  Google Scholar 

  29. H. Zhu, Y. Ma, H. Yang, P. Zhu, J. Du, C. Ji, Solid State Commun. 150, 1208 (2010)

    CAS  Google Scholar 

  30. H. Kishimura, S. Hamada, A. Aruga, H. Matsumoto, Appl. Phys. Lett. 106, 011903 (2015)

    Google Scholar 

  31. R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Nano Lett. 13, 1416 (2012)

    Google Scholar 

  32. W. Qi, G. Chen, C. Yang, C. Luo, X. Zhao, J. Mater. Sci. Mater. Electron. 28, 9237 (2017)

    CAS  Google Scholar 

  33. H. Guo, X. Zhao, G. Ning, Langmuir 19, 4884 (2003)

    CAS  Google Scholar 

  34. H. Guo, X. Zhao, H. Guo, Q. Zhao, Langmuir 19, 9799 (2003)

    CAS  Google Scholar 

  35. Z. Guo, X. Zhao, Polymer 44, 4519 (2003)

    Google Scholar 

  36. C. Zhang, J.Y. Lee, J. Phys. Chem. C 117, 15253 (2013)

    CAS  Google Scholar 

  37. M.Q. Yu, J.M. Su, G.F. Wang, Y.D. Li, Nano Res. 9, 2338 (2016)

    CAS  Google Scholar 

  38. T. Hinamoto, H. Takashina, H. Sugimoto, M. Fujii, J. Phys. Chem. C 121, 8077 (2017)

    Google Scholar 

  39. F. Zhang, G.B. Braun, Y. Shi, Y. Zhang, X. Sun, N.O. Reich, D. Zhao, G. Stucky, J. Am. Chem. Soc. 132, 2850 (2010)

    CAS  Google Scholar 

  40. X. Chen, W. Gui, Q. Ma, Anal. Chim. Acta 1009, 73 (2018)

    CAS  Google Scholar 

  41. M. Wang, L. Xu, G. Chen, X. Zhao, ACS Appl. Mater. Interfaces 11, 2328 (2019)

    CAS  Google Scholar 

  42. W. Cheng, F. Rechberger, M. Niederberger, ACS Nano (2016). https://doi.org/10.1021/acsnano.5b07301

    Article  Google Scholar 

  43. C. Ciracì, R.T. Hill, J.J. Mock, Y.A. Urzhumov, I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Science 337, 1072 (2012)

    Google Scholar 

  44. X.C. Ma, Y. Dai, L. Yu, B.B. Huang, Light Sci. Appl. 5, e16017 (2016)

    CAS  Google Scholar 

  45. X.C. Ma, Y. Dai, L. Yu, Z.Z. Lou, B.B. Huang, M.H. Wangbo, J. Phys. Chem. C 118, 12133 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674267, 51272215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, M., Liu, Z. et al. Nano-topological luminophor Y2O3:Eu3+ + Ag with concurrent photoluminescence and electroluminescence. J Mater Sci: Mater Electron 30, 20243–20252 (2019). https://doi.org/10.1007/s10854-019-02408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02408-4

Navigation