Skip to main content

Advertisement

Log in

Electromagnetic shielding of ultrathin, lightweight and strong nonwoven composites decorated by a bandage-style interlaced layer electropolymerized with polyaniline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electromagnetic shielding materials with characteristics of ultrathin, lightweight and high strength are the most advantageous materials in electromagnetic shielding. In this work, novel carbon fiber nonwoven composites with interlayer microstructure were designed and prepared. Due to their special structure, carbon fiber nonwoven composites coated with polyaniline by means of electropolymerization showed excellent electromagnetic shielding (65 dB) and mechanical properties (bending strength of 457 MPa). More intriguing, the absolute SE (Shielding Effectiveness) of the composites can be as high as 3904 dB.cm2/g. In order to explore the elementary mechanisms of electromagnetic loss, the relevant calculation of electromagnetic shielding effectiveness was carried out. The experimental and theoretical results show that the reflection is the dominant shielding performance of the carbon fiber nonwoven composites. However, with the increase of electropolymerization time, the absorption loss was enhanced and the reflection was weakened, which was caused by the conductive polyaniline network structure covered on the nonwoven fiber surface. Based on the comparison between experimental results and theoretical calculation, the effect of multiple reflection loss on the total electromagnetic shielding performance was improved, and the loss mechanism of multiple reflection was analyzed in detail. Moreover, the surface roughness of fiber and the formation of polymerization products by electropolymerization could effectively enhance the interfacial strength between carbon fiber nonwoven and epoxy, which observably increased the bending strength by 83%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014)

    CAS  Google Scholar 

  2. B. Wen, M. Cao, M. Lu, W. Cao et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    CAS  Google Scholar 

  3. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    CAS  Google Scholar 

  4. E. Vazquez, M. Prato, Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano 3, 3819–3824 (2009)

    CAS  Google Scholar 

  5. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    CAS  Google Scholar 

  6. Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 111, 13696–13700 (2007)

    CAS  Google Scholar 

  7. F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Electromagnetic shielding performance of carbon foams. Carbon 50, 1972–1980 (2012)

    CAS  Google Scholar 

  8. H.B. Wang, K.Y. Teng, C. Chen, X.J. Li, Z.W. Xu et al., Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma irradiation. Mater. Lett. 186, 78–81 (2017)

    CAS  Google Scholar 

  9. D. Micheli, R.B. Morles, M. Marchetti, F. Moglie, V.M. Primiani, Broadband electromagnetic characterization of carbon foam to metal contact. Carbon 68, 149–158 (2014)

    CAS  Google Scholar 

  10. C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang, Y. Xu, SiCeFe3O4 dielectric magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014)

    CAS  Google Scholar 

  11. K.L. Wang, W. Wang, H.B. Wang, L.S. Liu, Z.W. Xu et al., 3D graphene foams/epoxy composites with double-sided binder polyaniline interlayers for maintaining excellent electrical conductivities and mechanical properties. Compos. Part A 110, 246–257 (2018)

    CAS  Google Scholar 

  12. W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014)

    CAS  Google Scholar 

  13. H.B. Wang, W. Wang, Y.F. Zhao, Z.W. Xu, L. Chen et al., Superior adsorption of 3D nanoporous architectures for Ni(II) ions adsorption using polyvinyl alcohol as cross-linking agent and adsorption conveyor. RSC Adv. 8, 7899–7903 (2018)

    CAS  Google Scholar 

  14. Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Chemo selectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 6, 12298–12302 (2014)

    CAS  Google Scholar 

  15. W.X. Li, Z.W. Xu, L. Chen, M.J. Shan, X. Tian et al., A facile method to produce graphene oxide-g-poly(L-Lactic Acid)as an promising reinforcement for PLLA nanocomposites. Chem. Eng. J. 237, 291–299 (2014)

    CAS  Google Scholar 

  16. I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces. 9, 19202–19214 (2016)

    Google Scholar 

  17. B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces. 9, 20873–20884 (2017)

    CAS  Google Scholar 

  18. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)

    CAS  Google Scholar 

  19. W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015)

    CAS  Google Scholar 

  20. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, X. Xue, Z. Zhang, Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017)

    Google Scholar 

  21. Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Ultralight, superelastic and volume-preserving cellulose fiber/graphene aerogel for highperformance electromagnetic interference shielding. Carbon 115, 629–639 (2017)

    CAS  Google Scholar 

  22. X. Hong, D.D.L. Chung, Carbon nanofiber mats for electromagnetic interference shielding. Carbon 111, 529–537 (2017)

    CAS  Google Scholar 

  23. H.B. Wang, N. Li, Z.W. Xu, X. Tian, W. Mai et al., Enhanced sheet-sheet welding and interfacial wettability of 3D graphene networks as radiation protection in gamma-irradiated epoxy composites. Compos. Sci. Technol. 157, 57–66 (2018)

    CAS  Google Scholar 

  24. W.W. Jiang, H.B. Wang, Z.W. Xu, N. Li, C. Chen et al., A review on manifold synthetic and reprocessing methods of 3D porous graphene-based architecture for Li-ion anode. Chem. Eng. J. 335, 954–969 (2018)

    CAS  Google Scholar 

  25. Y. Xu, Y. Li, W. Hua, A. Zhang, J. Bao, Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces. 8, 24131–24142 (2016)

    CAS  Google Scholar 

  26. H. Wu, D. Kong, Z. Ruan, P.C. Hsu, S. Wang, Z. Yu, J. Carney Thomas, L. Hu, S. Fan, Y. Cui, A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013)

    CAS  Google Scholar 

  27. S. An, H.S. Jo, D.Y. Kim, H.J. Lee, B.K. Ju, S.S. Al-Deyab, J.H. Ahn, Y. Qin, M.T. Swihart, A.L. Yarin, S.S. Yoon, Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv. Mater. 28, 7149–7154 (2016)

    CAS  Google Scholar 

  28. Y. Wang, J. Cheng, Y. Xing, M. Shahid, H. Nishijima, W. Pan, Stretchable platinum network-based transparent electrodes for highly sensitive wearable electronics. Small 13, 1604291 (2017)

    Google Scholar 

  29. J.C. Wang, C.S. Xiang, Q. Liu, Y.N. Pan, J.K. Guo, Ordered mesoporous carbon/fused silica composites. Adv. Funct. Mater. 18, 2995–3002 (2008)

    CAS  Google Scholar 

  30. J.C. Wang, H. Zhou, J.D. Zhuang, Q. Liu, Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites. Sci. Rep. 3, 3252 (2013)

    Google Scholar 

  31. B. Jiang, T. Zhang, Y.D. Huang, Interfacially reinforced carbon fiber composites by grafting modified methylsilicone resin. Compos. Sci. Technol. 140, 39–45 (2017)

    CAS  Google Scholar 

  32. C. Zhang, L.S. Liu, Z.W. Xu, H.M. Lv, N. Wu et al., Improvement for interface adhesion of epoxy/carbon fibers endowed with carbon nanotubes via microwave plasma-enhanced chemical vapor deposition. Polym. Compos. 39, E1262–E1268 (2018)

    CAS  Google Scholar 

  33. H.M. Wu, Z.Y. Zhou, L. Chen, W.X. Li, Q.Q. Han et al., PECVD-induced growing of diverse nanomaterials on carbon nanofibers under various conditions. Mater. Lett. 216, 291–294 (2018)

    CAS  Google Scholar 

  34. J. Liu, Y.L. Tian, Y.J. Chen, J.Y. Liang, L.F. Zhang, H. Feng, A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Mater. Chem. Phys. 122, 548–555 (2010)

    CAS  Google Scholar 

  35. X. Qian, J.H. Zhi, L.Q. Chen, J. Huang, Y.G. Zhang, Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites. Surf. Interface Anal. 45, 937–942 (2013)

    CAS  Google Scholar 

  36. F. Severini, L. Formaro, M. Pegoraro, L. Posca, Chemical modification of carbon fiber surfaces. Carbon 40, 735–741 (2002)

    CAS  Google Scholar 

  37. K.Z. Li, C. Wang, H.J. Li, X.T. Li, H.B. Yang, J. Wei, Effect of chemical vapor deposition treatment of carbon fibers on the reflectivity of carbon fiber-reinforced cement-based composites. Compos. Sci. Technol. 68, 1105–1114 (2008)

    CAS  Google Scholar 

  38. Z.W. Xu, L.S. Liu, Y.D. Huang, Y. Sun, X.Q. Wu, J.L. Li, Graphitization of polyacrylonitrile carbon fibers and graphite irradiated by γ rays. Mater. Lett. 63, 1814–1816 (2009)

    CAS  Google Scholar 

  39. S. Tiwari, J. Bijwe, S. Panier, Gamma radiation treatment of carbon fabric to improve the fiber–matrix. Wear 271, 2184–2192 (2011)

    CAS  Google Scholar 

  40. Z.W. Xu, Y.D. Huang, C.H. Zhang, L. Liu, Y.H. Zhang, L. Wang, Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 67, 3261–3270 (2007)

    CAS  Google Scholar 

  41. X.H. Sui, Z.W. Xu, C.S. Hu, L. Chen, L.S. Liu, L.Y. Kuang, Microstructure evolution in γ-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section. Compos. Sci. Technol. 130, 46–52 (2016)

    CAS  Google Scholar 

  42. A. Dumanl, A. Erden, Y. Yürüm, Development of supercapacitor active composites by electrochemical deposition of polypyrrole on carbon nanofibres. Polym. Bull. 68, 1395–1404 (2012)

    Google Scholar 

  43. A. Murat, A comparative study of redox parameters and electrochemical impedance spectroscopy of polycarbazole derivatives on carbon fiber microelectrode. Fiber Polym. 11, 1094–1100 (2010)

    Google Scholar 

  44. M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)

    Google Scholar 

  45. Z.Q. Tong, L. Shikun, X.G. Li et al., Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties. Electrochim. Acta 222, 194–202 (2016)

    CAS  Google Scholar 

  46. A. Attout, S. Yunus, P. Bertrand, Electroless deposition of polyaniline: synthesis and characterization. Surf. Interface Anal. 40, 657–660 (2008)

    CAS  Google Scholar 

  47. X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019)

    CAS  Google Scholar 

  48. M. Arjmand, M. Mahmoodi, S. Park, U. Sundararaj et al., Impact of foaming on the broadband dielectric properties of multi-walled carbon nanotube/polystyrene composites. J. Cell. Plast. 50, 551–562 (2014)

    CAS  Google Scholar 

  49. S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan et al., EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009)

    CAS  Google Scholar 

  50. Y. Wang, W. Wang, D. Yu, Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high Microwave Absorption Performance. Appl. Surf. Sci. 425, 518–525 (2017)

    CAS  Google Scholar 

  51. J.Q. Ling, W.T. Zhai, W.W. Feng, B. Shen, J.F. Zhang, W.G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 5, 2677–2684 (2013)

    CAS  Google Scholar 

  52. G.S. Kumar, T.U. Patro, Efficient electromagnetic interference shielding and radar absorbing properties of ultrathin and flexible polymer-carbon nanotube composite films. Mater. Res. Express 5(11), 115304 (2018)

    Google Scholar 

  53. S. Teotia, B.P. Singh, I. Elizabeth, V.N. Singh, R. Ravikumar, A.P. Singh, S. Gopukumar et al., Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv. 4, 33168 (2014)

    CAS  Google Scholar 

  54. Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    CAS  Google Scholar 

  55. Z.H. Zeng, M.J. Chen, H. Jin, W.W. Li, X. Xue, L.C. Zhou et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2015)

    Google Scholar 

  56. P. Saini, V. Choudhary, V.B. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    CAS  Google Scholar 

  57. X.Y. Sun, X. Liu, X. Shen, Y. Wu, Z.Y. Wang, J.K. Kim, Reprint of Graphene foam/carbon nanotube/poly(dimethyl siloxane)composites for exceptional microwave shielding. Compos. Part. A 92, 190–197 (2016)

    Google Scholar 

  58. H. Mohammed, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    Google Scholar 

  59. A. Ameli, P.U. Jung, C.B. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013)

    CAS  Google Scholar 

  60. D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22, 18772–18774 (2012)

    CAS  Google Scholar 

  61. T. Bansala, M. Joshi, S. Mukhopadhyay, R. Doong, M. Chaudhary, Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J. Mater. Sci. 52, 1546–1560 (2017)

    CAS  Google Scholar 

  62. H. Mohammed, A. Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 738–746 (2009)

    Google Scholar 

  63. Y. Wu, Z.Y. Wang, X. Liu, X. Shen, Q.B. Zheng, Q. Xue, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9, 9059–9069 (2017)

    CAS  Google Scholar 

  64. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)

    CAS  Google Scholar 

  65. J. Lee, Y.N. Liu, Y. Liu, S. Park, M. Parkc, H.Y. Kim, Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 5, 7853–7861 (2017)

    CAS  Google Scholar 

  66. H. Wang, K. Zheng, X. Zhang, X. Ding, Z.X. Zhang et al., 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos. Sci. Technol. 125, 22–29 (2016)

    CAS  Google Scholar 

  67. M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)

    Google Scholar 

  68. Y.H. Zhang, S.J. Park, Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets. J. Polym. Sci. Polym. Phys. 55(24), 1890–1898 (2017)

    CAS  Google Scholar 

  69. Z.B. Zhao, K.Y. Teng, N. Li, X.J. Li, Z.W. Xu et al., Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos. Struct. 159, 761–772 (2017)

    Google Scholar 

  70. M.J. Shan, H.B. Wang, Z.W. Xu, N. Li, C. Chen et al., Synergetic improvement of mechanical properties and surface activities in g-irradiated carbon fibers revealed by radial positioning spectroscopy and mechanical model. Anal. Methods 10, 496–503 (2018)

    CAS  Google Scholar 

  71. Y. Ni, L. Chen, K.Y. Teng, J. Shi, X.M. Qian et al., Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl. Mater. Interfaces. 7, 11583–11591 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (11575126), the Natural Science Foundation of Tianjin (16JCZDJC37800, 16JCYBJC17700) and the Science and Technology Plans of Tianjin (16ZXCLGX00090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Liao, B., Wang, H. et al. Electromagnetic shielding of ultrathin, lightweight and strong nonwoven composites decorated by a bandage-style interlaced layer electropolymerized with polyaniline. J Mater Sci: Mater Electron 30, 20420–20431 (2019). https://doi.org/10.1007/s10854-019-02379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02379-6

Navigation