Skip to main content
Log in

Humic acid assisted chemical synthesis of silver nanoparticles for inkjet printing of flexible circuits

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, humic acid (HA) was used as stabilizer to prepare silver nanoparticles (Ag NPs) by chemically reducing silver salts in water phase, which were employed to produce Ag NPs inks for inkjet printing conductive silver patterns. The obtained silver nanoparticles stabilized with HA (HA-Ag NPs) were all in spherical shape and the particle size was about 7–12 nm. By re-dispersing HA-Ag NPs in ultrapure water, conductive ink with excellent storage stability was prepared, which can be placed at room temperature for 30 days without any precipitation. The as-prepared HA-Ag NPs conductive ink was printed onto photopapers to fabricate conductive silver patterns with a domestic inkjet printer. The resistivity of the printed pattern could reach 135 μΩ cm after printed for 40 layers and sintered at 180 °C for 60 min. In addition, the printed conductive silver patterns could be integrated into a LED device or alarm apparatus, indicating it could be widely used in flexible printing electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Woo, D. Kim, J.S. Kim et al., Inkjet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25(1), 429–433 (2009)

    CAS  Google Scholar 

  2. W. Wu, Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 20(1), 187–224 (2019)

    CAS  Google Scholar 

  3. A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005)

    CAS  Google Scholar 

  4. N.C. Raut, K. Al-Shamery, Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6(7), 1618–1641 (2018)

    CAS  Google Scholar 

  5. W. Wu, Inorganic nanomaterials for printed electronics: a review. Nanoscale 9(22), 7342–7372 (2017)

    CAS  Google Scholar 

  6. D. Zhu, M. Wu, Highly conductive nano-silver circuits by inkjet printing. J. Electron. Mater. 47(9), 5133–5147 (2018)

    CAS  Google Scholar 

  7. Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Tannic acid stabilized antioxidation copper nanoparticles in aqueous solution for application in conductive ink. J. Mater. Sci. 29(24), 20603–20606 (2018)

    CAS  Google Scholar 

  8. P.S. Karthik, S. Singh, P, Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5(95), 77760–77790 (2015)

    Google Scholar 

  9. K. Jaakkola, H. Sandberg, M. Lahti, V. Ermolov, Near-Field UHF RFID transponder with a screen-printed graphene antenna. IEEE Trans. Comput. Pack. Manuf. 9(4), 616–623 (2019)

    CAS  Google Scholar 

  10. W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014)

    CAS  Google Scholar 

  11. S. Milardovic, I. Ivanisevic, A. Rogina, P. Kassal, Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing. Int. J. Electrochem. Sci. 13(11), 11136–11149 (2018)

    CAS  Google Scholar 

  12. S.A. Patil, C.H. Ryu, H.S. Kim, Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. Int. J. Precis. Eng. Manuf. 5(2), 239–245 (2018)

    Google Scholar 

  13. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)

    CAS  Google Scholar 

  14. A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014)

    CAS  Google Scholar 

  15. Y.Y. Hao, J. Gao, Z. Xu et al., Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J. Chem. 43(6), 2797–2803 (2019)

    CAS  Google Scholar 

  16. M. Wagner, C.D. O’Connell, D.G. Harman et al., Synthesis and optimization of PEDOT:PSS based ink for printing nanoarrays using dip-pen nanolithography. Synth. Met. 181, 64–71 (2013)

    CAS  Google Scholar 

  17. G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO2, NH3m EtOH and acetone. RSC Adv. 4(93), 51395–51403 (2014)

    CAS  Google Scholar 

  18. N.J. Zhang, R. Luo, X.Y. Liu, Liu, Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics. RSC Adv. 6(87), 83720–83729 (2016)

    CAS  Google Scholar 

  19. Q.F. Chen, G.H. Liu, G.X. Chen et al., Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources 12(1), 608–621 (2017)

    CAS  Google Scholar 

  20. M.C. Dang, T.M.D. Dang, E. Fribourg-Blanc, Silver nanoparticles ink synthesis for conductive patterns fabrication using inkjet printing technology. Adv. Nat. Sci. 6(1), 015003–015010 (2015)

    CAS  Google Scholar 

  21. Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid et al., Preparation and characterization of silver nanoparticles by chemical reduction method. Colloid Surf. B 82(2), 513–517 (2011)

    CAS  Google Scholar 

  22. M.F. Zhang, A.W.B. Zhao, H.H. Sun et al., Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates. J. Mater. Chem. 21(46), 18817–18824 (2011)

    CAS  Google Scholar 

  23. Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Green synthesis of silver nanoparticles by tannic acid with improved catalytic performance towards the reduction of methylene blue. NANO 13(01), 1850003–1850010 (2018)

    CAS  Google Scholar 

  24. J. Ding, J. Liu, Q. Tian et al., Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res. Lett. 11(1), 412–419 (2016)

    Google Scholar 

  25. A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4(19), 19–36 (2011)

    CAS  Google Scholar 

  26. Z. Wang, X.W. Liang, T. Zhao et al., Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J. Mater. Sci. 28(22), 16939–16947 (2017)

    CAS  Google Scholar 

  27. X.Q. Zhou, W. Li, M.L. Wu et al., Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)

    CAS  Google Scholar 

  28. T.H. Chiang, K.D. Wu, T.E. Hsieh, Preparation of silver nanoparticles by using tripropylene glycol as the reducing agents of polyol process. IEEE Trans. Nanotechnol. 13(1), 116–122 (2014)

    CAS  Google Scholar 

  29. E.K. Elumalai, K. Kayalvizhi, S. Silvan, Coconut water assisted green synthesis of silver nanoparticles. J. Pharm. Bioallied Sci. 6(4), 241–245 (2014)

    CAS  Google Scholar 

  30. J. Bastos-Arrieta, A. Florido, C. Perez-Rafols et al., Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 8(11), 946–959 (2018)

    Google Scholar 

  31. J.M. Jacob, M.S. John et al., Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using ocimum sanctum leaf extract. Mater. Res. Express 6(4), 352–360 (2019)

    Google Scholar 

  32. S.T. Dubas, V. Pimpan, Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater. Lett. 62(17–18), 2661–2663 (2008)

    CAS  Google Scholar 

  33. I.L. Gunsolus, M.P.S. Mousavi et al., Effects of humic and fulvic acids on silver nanoparticle stability, dssolution, and toxicity. Environ. Sci. Technol. 49(13), 8078–8086 (2015)

    CAS  Google Scholar 

  34. Y. Liu, R.G. Jordan, S.L. Qiu, Electronic-structures of ordered Ag–Mg alloys. Phys. Rev. B 49(7), 4478–4484 (1994)

    CAS  Google Scholar 

  35. N.P. Bellafont, F. Vines, F. Illas, Performance of the TPSS functional on predicting core level binding energies of main group elements containing molecules: a good choice for molecules adsorbed on metal surfaces. J. Chem. Theory Comput. 12(1), 324–331 (2016)

    Google Scholar 

  36. J.M. Bingham, J.N. Anker, L.E. Kreno, R.P. Van Duyne, Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132(49), 17358–17359 (2010)

    CAS  Google Scholar 

  37. J. Sharma, N.K. Chaki, A.B. Mandale et al., Controlled interlinking of Au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. J. Colloid Interface Sci. 272(1), 145–152 (2004)

    CAS  Google Scholar 

  38. V.K. Kaushik, Xps core level spectra and auger parameters for some silver compounds. J. Electron. Spectrosc. 56(3), 273–277 (1991)

    CAS  Google Scholar 

  39. G. Zhang, H.Y. Gao, X.C. Tian et al., The performance study of OLED based on Cs2O doped Ag2O thin layer structure as the electronic injection layer. Mod. Phys. Lett. B 29(17), 1550080 (2015)

    CAS  Google Scholar 

  40. J.J. Alberts, Z. Filip, Metal binding in estuarine humic and fulvic acids: FTIR analysis of humic acid-metal complexes. Environ. Technol. 19(9), 923–931 (1998)

    CAS  Google Scholar 

  41. K.S. Moon, H. Dong, R. Maric et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34(2), 168–175 (2005)

    CAS  Google Scholar 

  42. F. Zhang, Y.W. Li et al., Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures. J. Mater. Chem. C 6, 3999–4006 (2018)

    CAS  Google Scholar 

  43. T.T. Nge, M. Nogi, K. Suganuma, Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J. Mater. Chem. C 1, 5235–5243 (2013)

    CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-19), MOE & SAFEA for the 111 Project (B13025) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Luo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Xu, Z., Gao, J. et al. Humic acid assisted chemical synthesis of silver nanoparticles for inkjet printing of flexible circuits. J Mater Sci: Mater Electron 30, 20400–20409 (2019). https://doi.org/10.1007/s10854-019-02372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02372-z

Navigation