Skip to main content
Log in

Gas sensing by using volume fraction of adsorption in photonic crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Generally, photonic bandgap (PBG) would shift when photonic crystals (PCs) are exposed to different surrounding conditions. Thus, the shift of PBG could be used to study the adsorption behavior of gas on the surface of PCs. However, the amount of PBG shift only contains finite information about analyte which could cause the change of structural parameters of PCs. In this paper, we have deduced the volume fraction of adsorption vapor (Vvap) in silica PCs to quantitatively explain the effect of target gases on adsorption behavior according to Replacing model based on our previous research. In this work, the effect of volume fraction of void in silica PCs and types of target gases on gas adsorption behavior has been discussed by using Vvap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Ozaki, Y. Shimoda, M. Kasano, K. Yoshino, Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv. Mater. 14, 514–518 (2002)

    Article  CAS  Google Scholar 

  2. I. Pavlichenko, A.T. Exner, M. Guehl, P. Lugli, G. Scarpa, B.V. Lotsch, Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks. J. Phys. Chem. C 116, 298–305 (2012)

    Article  CAS  Google Scholar 

  3. M. Kumoda, M. Watanabe, Y. Takeoka, Preparations and optical properties of ordered arrays of submicron gel particles: interconnected state and trapped state. Langmuir 22, 4403–4407 (2006)

    Article  CAS  Google Scholar 

  4. C. Du, Q. Wang, Y. Zhao, J. Li, Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating. Opt. Fiber Technol. 34, 12–15 (2017)

    Article  CAS  Google Scholar 

  5. E. Tian, J.X. Wang, Y.M. Zheng, Y.L. Song, L. Jiang, D.B. Zhu, Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 18, 1116–1122 (2008)

    Article  CAS  Google Scholar 

  6. H. Hu, Q.W. Chen, K. Cheng, J. Tang, Visually readable and highly stable self-display photonic humidity sensor. J. Mater. Chem. 22, 1021–1027 (2012)

    Article  CAS  Google Scholar 

  7. J. Huang, C.A. Tao, Q. An, C.X. Lin, X.S. Li, D. Xu, Y.G. Wu, X.G. Li, D.Z. Shen, G.T. Li, Visual indication of enviromental humidity by using poly (ionic liquid) photonic crystals. Chem. Commun. 46, 4103–4105 (2010)

    Article  CAS  Google Scholar 

  8. R.Y. Xuan, Q.S. Wu, Y.D. Yin, J.P. Ge, Magnetically assembled photonic crystal film for humidity sensing. J. Mater. Chem. 21, 3672–3676 (2011)

    Article  CAS  Google Scholar 

  9. D.L. Torres, C. Elosua, J. Villatoro, J. Zubia, M. Rothhardt, K. Schuster, F.J. Arregui, Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B 242, 1065–1072 (2017)

    Article  Google Scholar 

  10. K. Lee, S.A. Asher, Photonic crystal chemical sensors: pH and ionic strength. Am. Chem. Soc. 122, 9534–9537 (2000)

    Article  CAS  Google Scholar 

  11. J. Baumgartl, M. Zvyagolskaya, C. Bechinger, Tailoring of photonic band structures in colloidal crystals. Phys. Rev. Lett. 99, 205503 (2007)

    Article  CAS  Google Scholar 

  12. Z.H. Wang, J.H. Zhang, J.X. Li, J. Xie, Y.F. Li, S. Liang, Z.C. Tian, C. Li, Z.Y. Wang, T.Q. Wang, H. Zhang, B. Yang, Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals. J. Mater. Chem. 21, 1264–1270 (2011)

    Article  CAS  Google Scholar 

  13. T. Endo, Y. Yanagida, T. Hatsuzawa, Colorimetric detection of volatile organic compounds using a colloidal crystal-based chemical sensor for environmental applications. Sens. Actuators B 125, 589–595 (2007)

    Article  CAS  Google Scholar 

  14. B.F. Ye, Y.J. Zhao, Y. Cheng, T.T. Li, Z.Y. Xie, X.W. Zhao, Z.Z. Gu, Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale. 4, 5998–6003 (2012)

    Article  CAS  Google Scholar 

  15. X.Z. Ye, Y. Li, J.Y. Dong, J.Y. Xiao, Y.R. Ma, L.M. Qi, Facile synthesis of ZnS nanobowl arrays and their applications as 2D photonic crystal sensors. J. Mater. Chem. C 1, 6112–6119 (2013)

    Article  CAS  Google Scholar 

  16. D. Arunbabu, A. Sannigrahi, T. Jana, Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter 7, 2592–2599 (2011)

    Article  CAS  Google Scholar 

  17. K.W. Kimble, J.P. Walker, D.N. Finegold, S.A. Asher, Progress toward the development of a point-of-care photonic crystal ammonia sensor. Anal. Bioanal. Chem. 385, 678–685 (2006)

    Article  CAS  Google Scholar 

  18. M. Liu, L.P. Yu, A novel platform for sensing an amino acid by integrating hydrogel photonic crystals with ternary complexes. Analyst 138, 3376–3379 (2013)

    Article  CAS  Google Scholar 

  19. H.L. Peng, S.Q. Wang, Z. Zhang, H. Xiong, J.H. Li, L.X. Chen, Y.B. Li, Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J. Agric. Food Chem. 60, 1921–1928 (2012)

    Article  CAS  Google Scholar 

  20. J.L. Li, X.W. Zhao, H.M. Wei, Z.Z. Gu, Z.H. Lu, Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor. Anal. Chim. Acta 625, 63–69 (2008)

    Article  CAS  Google Scholar 

  21. Y.X. Zhang, P.Y. Zhao, L.P. Yu, Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sens. Actuators B 181, 850–857 (2013)

    Article  CAS  Google Scholar 

  22. H.L. Cong, B. Yu, J.G. Tang, Z.J. Li, X.S. Liu, Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 44, 7774–7800 (2014)

    Google Scholar 

  23. D.D. Men, D.L. Liu, Y. Li, Visualized optical sensors based on two/three-dimensional photonic crystals for biochemical. Sci. Bull. 61, 1358–1371 (2016)

    Article  CAS  Google Scholar 

  24. B.H. King, A.M. Ruminski, J.L. Snyder, M.J. Sailor, Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon. Adv. Mater. 19, 4530–4534 (2007)

    Article  CAS  Google Scholar 

  25. A.M. Ruminski, B.H. King, J. Salonen, J.L. Snyder, M.J. Sailor, Porous silicon-based optical microsensors for volatile organic analytes: effect of surface chemistry on stability and specificity. Adv. Funct. Mater. 20, 2874–2883 (2010)

    Article  CAS  Google Scholar 

  26. Y.G. Cai, X.Q. Li, Effect of ammonia on the SiO2 colloidal particles synthesized by the Stöber method. Appl. Mech. Mater. 865, 25–29 (2017)

    Article  Google Scholar 

  27. X. Li, O. Niitsoo, A. Couzis, Electrostatically driven adsorption of silica nanoparticles on functionalized surfaces. J. Colloid Interfaces Sci. 394, 26–35 (2013)

    Article  CAS  Google Scholar 

  28. G.I.N. Waterhouse, J.B. Metson, H. Idriss, D.X. Sun-Waterhouse, Physical and optical properties of inverse opal CeO2 photonic crystals. Chem. Mater. 20, 1183–1190 (2008)

    Article  CAS  Google Scholar 

  29. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interfaces Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  30. X. Chen, Z.Q. Sun, Z.M. Chen, W.J. Shang, K. Zhang, B. Yang, Alternative preparation and morphologies of self-assembled colloidal crystals via combining capillarity and vertical deposition between two desired substrates. Colloid Surf. A 315, 89–97 (2008)

    Article  CAS  Google Scholar 

  31. J. Xie, M. Duan, P.H. Bai, K. Lei, C. Yang, B. Liu, L. Zhang, J.L. Tang, Y.Y. Wang, H. Wang, Gas sensing mechanism of silica with photonic bandgap shift. Anal. Chem. 91, 1133–1139 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Foundation of Sichuan Science and Technology Agency (2018RZ0043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Wang or Juan Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Bai, P., Xie, J. et al. Gas sensing by using volume fraction of adsorption in photonic crystals. J Mater Sci: Mater Electron 30, 19948–19955 (2019). https://doi.org/10.1007/s10854-019-02361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02361-2

Navigation