Skip to main content
Log in

Fabrication of Bi3+ substituted yttrium aluminum iron garnet (YAIG) nanoparticles and their structural, magnetic, optical and electrical investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Y3−xBixAl0.5Fe4.5O12 nanoparticles in powder form with composition x = 0.0, 0.5, 1.0,1.5 and 2.0 were fabricated by a sol–gel auto-combustion technique and calcined at 1150 °C for 10 h. The analysis of X-ray diffraction patterns using Rietveld refinement suggests that Bi-substituted yttrium aluminum iron garnet (YAIG) samples crystallize in cubic structure with Ia-\(\bar{3}\)d space group. The average size of crystallite of the samples calculated by the Scherer formula is found in the range of 19–24 nm which are in consistent with that of measured from Williamson–Hall curve. The absorption bands in Infrared spectra corresponding to garnet are shift to lower frequency with the increase of the Bi3+ concentration. Raman spectroscopy shows the non-vibrational behavior of Bi-substituted YAIG due to the excitation of Y3+ ions from the ground energy level. The morphology of the samples is observed by transmission electron microscopy and field emission scanning electron microscopy which showed most of the particles and grains are in spherical shape. The energy dispersive X-ray (EDS) spectra confirmed the elemental compositions of the selected sample. In UV–Visible spectroscopy, transparency of the samples decreases with increasing in Bi3+ ions substitution in YAIG. The saturation magnetization (Ms) decrease from the 14.59 to 2.25 emu/g with the increase in Bi3+ ions concentration, whereas, the values of coercivity (Hc) and retentivity (Mr) are very low. DC resistivity as a function of temperature shows the semiconducting nature of the synthesized samples and its decreased from 6.17 × 106 to 0.06 × 106 Ω-cm with the addition of Bi3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Deka, S. Ravi, D. Pamu, Impedance spectroscopy and ac conductivity mechanism in Sm doped yttrium iron garnet. Ceram. Int. 43, 10468–10477 (2017)

    Article  Google Scholar 

  2. T.C. Mao, J.C. Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic. J. Magn. Magn. Mater. 302, 74–81 (2006)

    Article  CAS  Google Scholar 

  3. S. Geller, J. Remeika, R. Sherwood, H. Williams, G. Espinosa, Magnetic study of the heavier rare-earth iron garnets. Phys. Rev. 137, A1034 (1965)

    Article  Google Scholar 

  4. D. Rodić, A. SzytuŁa, Z. Tomkowicz, M. Guillot, H. Le Gall, Temperature dependence of lattice constants and thermal expansion coefficient of terbium-yttrium ferrites garnets. J. Magn. Magn. Mater. 75, 79–87 (1988)

    Article  Google Scholar 

  5. L. Liu, Y. Suwa, S. Sato, Y. Nakasone, M. Nishi, G.T. Dang, E.K. Pradeep, T. Kawaharamura, Incorporation of yttrium to yttrium iron garnet thin films fabricated by mist CVD. Jpn. J. Appl. Phys. 56(4S), 42 (2017)

    Google Scholar 

  6. R.B. Borade, S.E. Shirsath, G. Vats, A.S. Gaikwad, S.M. Patange, S.B. Kadam, R.H. Kadam, A.B. Kadam, Polycrystalline to preferred-(100) single crystal texture phase transformation of yttrium iron garnet nanoparticles. Nanoscale Adv. 1(1), 403–413 (2019)

    Article  CAS  Google Scholar 

  7. X. Haitao, H. Yang, X. Wui, Yu. Lianxiang, Magnetic properties of Bi-doped Y3Fe5O12 nanoparticles. Curr. Appl. Phys. 8, 1–5 (2008)

    Article  Google Scholar 

  8. L. Jin, Y. Wang, L. Guangduo, J. Li, Y. He, Z. Zhong, H. Zhang, Temperature dependence of spin-wave modes and Gilbert damping in lanthanum-doped yttrium-iron-garnet films. AIP Adv. 9, 025301 (2019)

    Article  Google Scholar 

  9. H. Wu, F. Huang, T. Xu, R. Ti, X. Lu, Y. Kan, X. Lv, W. Zhu, J. Zhu, Magnetic and magnetodielectric properties of Y3−x La x Fe5O12 ceramics. J. Appl. Phys. 117(14), 144101 (2015)

    Article  Google Scholar 

  10. A. Arsad, N. Ibrahim, The effect of Ce doping on the structure, surface morphology and magnetic properties of Dy doped-yttrium iron garnet films prepared by a sol–gel method. J. Magn. Magn. Mater. 410, 128–136 (2016)

    Article  CAS  Google Scholar 

  11. H. Lee, Y. Yoon, H. Yoo, S.A. Choi, K. Kim, Y. Choi, H. Melikyan, T. Ishibashi, B. Friedman, K. Lee, Magnetic and FTIR studies of BixY3−x Fe5O12 (x = 0, 1, 2) powders prepared by the metal organic decomposition method. J. Alloys Compd. 509, 9434–9440 (2011)

    Article  CAS  Google Scholar 

  12. Aakansha, S. Ravi, Structural, magnetic and dielectric properties of Cr substituted yttrium iron garnets. J. Am. Ceram. Soc. 101(11), 5046–5060 (2018)

    Article  CAS  Google Scholar 

  13. O. Opuchovic, S. Culunlu, A.U. Morkan, I.A. Morkan, D. Niznansky, E. Garskaite, A. Beganskiene, A. Kareiva, Structural, morphological, and magnetic characterization of bulk and thin films Y3Al5–x Fe x O12 (YAIG): from the perspective of aqueous sol–gel processing. Chem. Eng. Commun. 204(9), 1037–1048 (2017)

    Article  CAS  Google Scholar 

  14. K. Matsumoto, K. Yamaguchi, T. Fujii, A. Ueno, Preparation of bismuth-substituted yttrium iron garnet powders by the citrate gel process. J. Appl. Phys. 69, 5918–5920 (1991)

    Article  CAS  Google Scholar 

  15. V.K. Mande, D.N. Bhoyar, S.K. Vyawhare, K.M. Jadhav, Effect of Zn2+–Cr3+substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. J. Mater. Sci. 29, 15259–15270 (2018)

    CAS  Google Scholar 

  16. C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    Article  CAS  Google Scholar 

  17. R. Tholkappiyan, K. Vishista, Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: an XRD, FT-IR, XPS and VSM study. Appl. Surf. Sci. 351, 1016–1024 (2015)

    Article  CAS  Google Scholar 

  18. P.B.A. Fechine, E.N. Silva, A.S. de Menezes, J. Derov, J.W. Stewart, A.J. Drehman, I.F. Vasconcelos, A.P. Ayala, L.P. Cardoso, A.S.B. Sombra, Synthesis, structure and vibrational properties of GdIGX:YIG1-x ferrimagnetic ceramic composite. J. Phys. Chem. Solids 70, 202–209 (2009)

    Article  CAS  Google Scholar 

  19. R. Peña-Garcia, A. Delgado, Y. Guerra, G. Duarte, L.A.P. Gonçalves, E. Padrón-Hernández, The synthesis of single-phase yttrium iron garnet doped zinc and some structural and magnetic properties. Mater. Res. Express 4, 016103 (2017)

    Article  Google Scholar 

  20. T. Biljan, S. Roncevic, Z. Meić, K. Kovač, Non-vibrational features in NIR FT-Raman spectra of lanthanide sesquioxides. Chem. Phys. Lett. 395, 246–252 (2004)

    Article  CAS  Google Scholar 

  21. T. Moroz, A. Ragozin, D. Salikhov, G. Belikova, V. Puchkov, H. Kagi, Micro-Raman spectra of ugrandite garnet. Spectrochim. Acta A. 73, 436–439 (2009)

    Article  CAS  Google Scholar 

  22. X.H. Wang, P.L. Chen, I.W. Chen, Two-step sintering of ceramics with constant grain-size, I. Y2O3. J. Am. Ceram. Soc. 89, 431–437 (2006)

    Article  CAS  Google Scholar 

  23. S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1−xCuxFe2O4 nanoparticles. Mater. Res. Express 6(1), 015023 (2018)

    Article  Google Scholar 

  24. F.W. Aldbea, N.I. Ahmad, N.B. Ibrahim, M. Yahya, Effect of increasing pH value on the structural, optical and magnetic properties of yttrium iron garnet films prepared by a sol–gel method.”. J. Sol-Gel. Sci. Technol. 71, 31–37 (2014)

    Article  CAS  Google Scholar 

  25. Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol–gel method. Appl. Surf. Sci. 256, 4543–4547 (2010)

    Article  CAS  Google Scholar 

  26. M.C. Onbasli, L. Beran, M. Zahradník, M. Kučera, R. Antoš, J. Mistrík, G.F. Dionne, M. Veis, C.A. Ross, Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770 nm. Sci. Rep. 6, 23640 (2016)

    Article  CAS  Google Scholar 

  27. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb 3+ or Pr 3+ ions in cobalt–nickel ferrite. J. Mater. Sci. 30(7), 6902–6909 (2019)

    CAS  Google Scholar 

  28. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci. 30, 5854–5865 (2019)

    CAS  Google Scholar 

  29. L. Wang, Z. Huang, H. Zhang, R. Yu, Phase and magnetic properties evolutions of Y3–x (CaZr)xFe5 − xO12 by the sol–gel method. J. Magn. Magn. Mater. 395, 73–80 (2015)

    Article  CAS  Google Scholar 

  30. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2−xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. 26(12), 9776–9781 (2015)

    CAS  Google Scholar 

  31. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. 27(11), 11691–11697 (2016)

    CAS  Google Scholar 

  32. Z. Cheng, H. Yang, L. Yu, Y. Cui, S. Feng, Preparation and magnetic properties of Y3Fe 5O12 nanoparticles doped with the gadolinium oxide. J. Magn. Magn. Mater. 302, 259–262 (2006)

    Article  CAS  Google Scholar 

  33. F.W. Aldbea, N.B. Ibrahim, M.H. Abdullah, R.E. Shaiboub, Structural and magnetic properties of Tb x Y 3–x Fe 5 O 12 (0≤ x≤ 0.8) thin film prepared via sol–gel method. J. Sol-Gel Sci. Technol. 62(3), 483–489 (2012)

    Article  CAS  Google Scholar 

  34. S.E. Shirsath, S.S. Jadhav, B. Toksha, S. Patange, K. Jadhav, Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4. J. Appl. Phys. 110, 013914 (2011)

    Article  Google Scholar 

  35. R. Kadam, A. Biradar, M. Mane, S.E. Shirsath, Sol-gel auto-combustion synthesis of Li3xMnFe2−xO4 and their characterizations. J. Appl. Phys. 112, 043902 (2012)

    Article  Google Scholar 

  36. M. Ajmal, A. Maqsood, Influence of zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites. Mater. Sci. Eng. B 139, 164–170 (2007)

    Article  CAS  Google Scholar 

  37. Y.-J. Siao, X. Qi, C.-R. Lin, J.-C. Huang, Dielectric relaxation and magnetic behavior of bismuth-substituted yttrium iron garnet. J. Appl. Phys. 109, 07A508 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Tata Institute of Fundamental Research (TIFR), Mumbai and SAIF, Indian Institute of Technology Madras (IITM), Chennai for providing the VSM and FT-Raman measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borade, R.B., Kadam, S.B., Wagare, D.S. et al. Fabrication of Bi3+ substituted yttrium aluminum iron garnet (YAIG) nanoparticles and their structural, magnetic, optical and electrical investigations. J Mater Sci: Mater Electron 30, 19782–19791 (2019). https://doi.org/10.1007/s10854-019-02344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02344-3

Navigation