Modification of optical and mechanical properties of nitrogen doped diamond-like carbon layers

Abstract

We have deposited diamond-like carbon (DLC) films on glass and Si substrates with direct ion beam deposition technique and investigated the effect of N2 doping on their structural, mechanical, and optical properties. The DLC coatings were doped with nitrogen under different flow rates of 5, 10, 20, 40, and 50 sccm. Morphological characteristics investigation of the prepared samples showed decrement in their average roughness from 4.1 to 0.68 nm. Raman studies showed that the number of graphitic sp2 bonding increased with N doping. By increasing the N2 content, the graphite cluster size increased. FTIR measurement revealed the functional groups available in the prepared samples. UV–Vis analysis showed that the optical transmission of nitrogen-doped DLC (N-DLC) coatings decreased when N2 content increased from 5 to 40 sccm followed by decrement in both the optical band gap and the internal stress. Finally, the mechanical properties such as hardness and elastic modulus decreased by increasing N2 content from 5 to 40 sccm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    X. Yan, T. Xu, G. Chen, S. Yang, H. Liu, Study of structure, tribological properties and growth mechanism of DLC and nitrogen-doped DLC films deposited by electrochemical technique. Appl. Surf. Sci. 236, 328–335 (2004)

    CAS  Google Scholar 

  2. 2.

    Z. Han, H. Li, G. Lin, C. Dong, Influence of nitrogen flow rate on the microstructure and properties of N and Me (Me = Cr, Zr) co-doped diamond-like carbon films. J. Mater. Sci. Technol. 26, 967–972 (2010)

    CAS  Google Scholar 

  3. 3.

    L. Ru, J. Huang, L. Gao, B. Qi, Hydrogen-free diamond-like carbon films prepared by microwave electron cyclotron resonance plasma-enhanced direct current magnetron sputtering. Thin Solid Films 519, 86–90 (2010)

    CAS  Google Scholar 

  4. 4.

    R. Zarei Moghadam, M.H. Ehsani, H. Rezagholipour Dizaji, P. Kameli, M. Jannesari, Modification of hydrophobicity properties of diamond like carbon films using glancing angle deposition method. Mater. Lett. 220, 301–304 (2018)

    Google Scholar 

  5. 5.

    R. Zarei Moghadam, H. Rezagholipour Dizaji, M.H. Ehsani, P. Kameli, M. Jannesari, Correlation study of structural, optical, and hydrophobicity properties of diamond-like carbon films prepared by an anode layer source. Mater. Res. Express 6, 055601 (2019)

    Google Scholar 

  6. 6.

    E. Ali, Ch. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D 39, 311 (2006)

    Google Scholar 

  7. 7.

    J.D. Beard, S. Aleksandrov, C.H. Walker, D. Wolverson, J.M. Mitchels, S.N. Gordeev, Magnetically enhanced plasma coating of nanostructures with ultrathin diamond-like carbon films. RSC Adv. 4, 26635–26644 (2014)

    CAS  Google Scholar 

  8. 8.

    M.K. Kuntumalla, V.V.S.S. Srikanth, S. Ravulapalli, U. Gangadharini, H. Ojha, N.R. Desai, C. Bansal, SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces. Phys. Chem. Chem. Phys. 17, 21331–21336 (2015)

    CAS  Google Scholar 

  9. 9.

    J.K. Luo, Y.Q. Fu, H.R. Le, J.A. Williams, S.M. Spearing, W.I. Milne, Diamond and diamond-like carbon MEMS. J. Micromech. Microeng. 17, 147 (2007)

    Google Scholar 

  10. 10.

    D.S. Grierson, R.W. Carpick, Nanotribology of carbon-based materials. Nano Today 2, 12–21 (2007)

    Google Scholar 

  11. 11.

    Z. Seker, H. Ozdamar, M. Esen, R. Esen, H. Kavak, The effect of nitrogen incorporation in DLC films deposited by ECR microwave plasma CVD. Appl. Surf. Sci. 314, 46–51 (2014)

    CAS  Google Scholar 

  12. 12.

    K. Zhou, P. Ke, X. Li, Y. Zou, A. Wang, Microstructure and electrochemical properties of nitrogen-doped DLC films deposited by PECVD technique. Appl. Surf. Sci. 329, 281–286 (2015)

    CAS  Google Scholar 

  13. 13.

    S.F. Ahmed, M.W. Moon, K.R. Lee, Effect of silver doping on optical property of diamond like carbon films. Thin Solid Films 517, 4035–4038 (2009)

    CAS  Google Scholar 

  14. 14.

    M. Ikeyama, S. Nakao, Y. Miyagawa, S. Miyagawa, Effects of Si content in DLC films on their friction and wear properties. Surf. Coat. Technol. 191, 38–42 (2005)

    CAS  Google Scholar 

  15. 15.

    P. Safaie, A. Eshaghi, S.R. Bakhshi, Optical properties of oxygen doped diamond-like carbon thin films. J. Alloys Compd. 672, 426–432 (2016)

    CAS  Google Scholar 

  16. 16.

    N. Fujisawa, T.F. Zhang, O.L. Li, K.H. Kim, Substrate-independent stress–strain behavior of diamond-like carbon thin films by nanoindentation with a spherical tip. J. Mater. Sci. 33, 699–708 (2018)

    CAS  Google Scholar 

  17. 17.

    C. Donnet, A. Erdemir (eds.), Tribology of diamond-like carbon films: fundamentals and applications (Springer, Heidelberg, 2008), pp. 318–319

    Google Scholar 

  18. 18.

    S.R. Polaki, K. Ganesan, S.K. Srivastava, M. Kamruddin, A.K. Tyagi, The role of substrate bias and nitrogen doping on the structural evolution and local elastic modulus of diamond-like carbon films. J. Phys. D 50, 175601 (2017)

    Google Scholar 

  19. 19.

    G.A. Viana, E.F. Motta, M.E.H.M. Da Costa, F.L. Freire Jr., F. das Chagas Marques, Diamond-like carbon deposited by plasma technique as a function of methane flow rate. Diam. Relat. Mater. 19, 756–759 (2010)

    CAS  Google Scholar 

  20. 20.

    D. Caschera, P. Cossari, F. Federici, S. Kaciulis, A. Mezzi, G. Padeletti, D.M. Trucchi, Influence of PECVD parameters on the properties of diamond-like carbon films. Thin Solid Films 519, 4087–4091 (2011)

    CAS  Google Scholar 

  21. 21.

    D. Bootkul, B. Supsermpol, N. Saenphinit, C. Aramwit, S. Intarasiri, Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by filtered cathodic vacuum arc (FCVA) technique. Appl. Surf. Sci. 310, 284–292 (2014)

    CAS  Google Scholar 

  22. 22.

    H. Li, M. Fang, Y. Hou, R. Tang, Y. Yang, C. Zhong, Q. Li, Z. Li, The different effect of the additional electron withdrawing cyano group in different conjugation bridge: the adjusted molecular energy levels and largely improved photovoltaic performance. ACS Appl. Mater. Interfaces 8, 12134–12140 (2016)

    CAS  Google Scholar 

  23. 23.

    V. Kopustinskas, Š. Meškinis, V. Grigaliūnas, S. Tamulevičius, M. Pucėta, G. Niaura, R. Tomašiūnas, Ion beam synthesis of α-CNx:H films. Surf. Coat. Technol. 180, 151–152 (2002)

    Google Scholar 

  24. 24.

    M. Tsuchiya, K. Murakami, K. Magara, K. Nakamura, H. Ohashi, K. Tokuda, T. Takami, H. Ogasawara, Y. Enta, Y. Suzuki, S. Ando, Structural and electrical properties and current–voltage characteristics of nitrogen-doped diamond-like carbon films on Si substrates by plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 55, 065502 (2016)

    Google Scholar 

  25. 25.

    J. Lee, B.H. Choi, J.H. Yun, Y.S. Park, Characteristics of nitrogen doped diamond-like carbon films prepared by unbalanced magnetron sputtering for electronic devices. J. Nanosci. Nanotechnol. 16, 4893–4896 (2016)

    CAS  Google Scholar 

  26. 26.

    S. Jonas et al., Formation of six Ny(H) and C:N:H layers by plasma-assisted chemical vapor deposition method. Thin Solid Films 600, 162–168 (2016)

    CAS  Google Scholar 

  27. 27.

    S. Jonas et al., Stability of a-C:N:H layers deposited by RF plasma enhanced CVD. Solid State Phenom. 147, 738–743 (2009)

    Google Scholar 

  28. 28.

    M.R. Sazideh, H.R. Dizaji, M.H. Ehsani, R.Z. Moghadam, Modification of the morphology and optical properties of SnS films using glancing angle deposition technique. Appl. Surf. Sci. 405, 514–520 (2017)

    CAS  Google Scholar 

  29. 29.

    W. Dai, A. Wang, Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources. J. Alloys Compd. 509, 4626–4631 (2011)

    CAS  Google Scholar 

  30. 30.

    Y. Wu, J. Chen, H. Li, L. Ji, Y. Ye, H. Zhou, Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Appl. Surf. Sci. 284, 165–170 (2013)

    CAS  Google Scholar 

  31. 31.

    J. Jianlg, H. Huang, Q. Wang, W. Zhu, J. Hao, W. Liu, Comparativestudy on structure and properties of titanium/silicon mono- and co-doped amorphous carbon films deposited by mid-frequency magnetron sputtering. Surf. Interface Anal. 46, 139–144 (2014)

    Google Scholar 

  32. 32.

    R. Hauert, A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 12, 583–589 (2003)

    CAS  Google Scholar 

  33. 33.

    M. Constantinou, M. Pervolaraki, P. Nikolaou, C. Prouskas, P. Patsalas, P. Kelires, J. Giapintzakis, G. Constantinides, Microstructure and nanomechanical properties of pulsed excimer laser deposited DLC:Ag films: enhanced nanotribological response. Surf. Coat. Technol. 309, 320–330 (2017)

    CAS  Google Scholar 

  34. 34.

    Y. Tang, Y.S. Li, Q. Yang, A. Hirose, Characterization of hydrogenated amorphous carbon thin films by End-Hall ion beam deposition. Appl. Surf. Sci. 257, 4699–4705 (2011)

    CAS  Google Scholar 

  35. 35.

    S. Logothetidis, G. Stergioudis, Studies of density and surface roughness of ultrathin amorphous carbon films with regards to thickness with X-ray reflectometry and spectroscopic ellipsometry. Appl. Phys. Lett. 71, 2463–2465 (1997)

    CAS  Google Scholar 

  36. 36.

    R.J. Waltman, H. Zhang, A. Khurshudov, D. Pocker, M.A. Karplus, B. York, Q.F. Xiao, H. Zadoori, J.U. Thiele, G.W. Tyndall, The effect of carbon overcoat thickness on the Zdol boundary lubricant film. Tribol. Lett. 12, 51–60 (2002)

    CAS  Google Scholar 

  37. 37.

    L. Cançado, A. Jorio, M. Pimenta, Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 76, 064304–064307 (2007)

    Google Scholar 

  38. 38.

    A. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    CAS  Google Scholar 

  39. 39.

    M. Pandey, D. Bhatacharyya, D.S. Patil, K. Ramachandran, N. Venkatramani, A.K. Dua, Structural and optical properties of diamond like carbon films. J. Alloys Compd. 386, 296–302 (2005)

    CAS  Google Scholar 

  40. 40.

    M. Chhowalla, A. Ferrari, J. Robertson, G. Amaratunga, Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419–1421 (2000)

    CAS  Google Scholar 

  41. 41.

    A. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 64, 075414–075427 (2001)

    Google Scholar 

  42. 42.

    B. Dischler, A. Bubenzer, P. Koidl, Hard carbon coatings with low optical absorption. Appl. Phys. Lett. 42, 636–638 (1983)

    CAS  Google Scholar 

  43. 43.

    H. Nakazawa, S. Miura, R. Kamata, S. Okuno, M. Suemitsu, T. Abe, Effects of pulse bias on structure and properties of silicon/nitrogen-incorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci. 264, 625–632 (2013)

    CAS  Google Scholar 

  44. 44.

    J.H. Kaufman, S. Metin, D.D. Saperstein, Symmetry breaking in nitrogen-doped amorphous carbon: infrared observation of the Raman-active G and D bands. Phys. Rev. B 39, 13053 (1989)

    CAS  Google Scholar 

  45. 45.

    S. Kundoo, P. Saha, K.K. Chattopadhyay, Electron field emission from nitrogen and sulfur-doped diamond-like carbon films deposited by simple electrochemical route. Mater. Lett. 58, 3920–3924 (2004)

    CAS  Google Scholar 

  46. 46.

    N. Tajik, M.H. Ehsani, R. Zarei Moghadam, H. Rezagholipour Dizaji, Effect of GLAD technique on optical properties of ZnS multilayer antireflection coatings. Mater. Res. Bull. 100, 265–274 (2017)

    Google Scholar 

  47. 47.

    M.H. Ehsani, R. Zarei Moghadam, H. Rezagholipour Dizaji, P. Kameli, Surface modification of ZnS films by applying an external magnetic field in vacuum chamber. Mater. Res. Express 4, 096408 (2017)

    Google Scholar 

  48. 48.

    S.E. Rodil, S. Muhl, Bonding in amorphous carbon nitride. Diam. Relat. Mater. 13, 1521–1531 (2004)

    CAS  Google Scholar 

  49. 49.

    A. Zkria, Y. Katamune, T. Yoshitake, Effects of nitrogen doping on the electrical conductivity and optical absorption of ultrananocrystalline diamond/hydrogenated amorphous carbon films prepared by coaxial arc plasma deposition. Jpn. J. Appl. Phys. 55, 07LE01-4 (2016)

    Google Scholar 

  50. 50.

    Z. Seker, H. Ozdamar, M. Esen, R. Esen, H. Kavak, The effect of nitrogen incorporation in DLC films deposited by ECR microwave plasma CVD. Appl. Surf. Sci. 314, 46–51 (2013)

    Google Scholar 

  51. 51.

    Z. Zhai, H. Shen, J. Chen, X. Li, Effect of deposition pressure on the properties of amorphous carbon films by hot-filament chemical vapor deposition. J. Mater. Sci. Mater. Electron. 30, 1–7 (2019)

    Google Scholar 

  52. 52.

    A. Hu, I. Alkhesho, H. Zhou, W.W. Duley, Optical and microstructural properties of diamond-like carbon films grown by pulsed laser deposition. Diam. Relat. Mater. 16, 149–154 (2007)

    CAS  Google Scholar 

  53. 53.

    N. Dwivedi, S. Kumar, G.H.K. Malik, C.M.S. Rauthan, O.S. Panwar, Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films. J. Vac. Sci. Technol. A 257, 6804–6810 (2011)

    CAS  Google Scholar 

  54. 54.

    M.H. Fang, P.Y. Tian, M.D. Zhu, H.J. Qi, T. Fei, J.P. Lv, H.P. Liu, Laser-induced damage threshold in HfO2/SiO2) multilayer films irradiated by β-ray. Chin. Phys. B 28, 024215 (2019)

    CAS  Google Scholar 

  55. 55.

    J.W. Zou, K. Reichelt, K. Schmidt, B. Dischler, The deposition and study of hard carbon films. J. Appl. Phys. 65, 3914–3918 (1989)

    CAS  Google Scholar 

  56. 56.

    O. Sharifahmadian, F. Mahboubi, S. Yazdani, Comparison between corrosion behaviour of DLC and N-DLC coatings deposited by DC-pulsed PACVD technique. Diam. Relat. Mater. 95, 60–70 (2019)

    CAS  Google Scholar 

  57. 57.

    Y.B. Zhang, S.P. Lau, D. Sheeja, B.K. Tay, Study of mechanical properties and stress of tetrahedral amorphous carbon films prepared by pulse biasing. Surf. Coat. Technol. 195, 338–343 (2005)

    CAS  Google Scholar 

  58. 58.

    Y.N. Kok, P.E. Hovsepian, Q. Luo, D.B. Lewis, J.G. Wen, I. Petrov, Influence of the bias voltage on the structure and the tribological performance of nanoscale multilayer C/Cr PVD coatings. Thin Solid Films 475, 219–226 (2005)

    CAS  Google Scholar 

  59. 59.

    T. Chen, X. Wu, Z. Ge, J. Ruan, B. Lv, J. Zhang, Achieving low friction and wear under various humidity conditions by co-doping nitrogen and silicon into diamond-like carbon films. Thin Solid Films 638, 375–382 (2017)

    CAS  Google Scholar 

  60. 60.

    D.-J. Jan, C.-F. Ai, C.-C. Lee, Deposition of nitrogen-containing diamond-like carbon films on acrylic substrates by an ion beam process. Vacuum 74, 531–538 (2004)

    CAS  Google Scholar 

  61. 61.

    R. Zarei Moghadam, H. Ahmadvand, M. Jannesari, Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate. Infrared Phys. Technol. 75, 18–21 (2016)

    CAS  Google Scholar 

  62. 62.

    C. Forsich, D. Heim, T. Mueller, Influence of the deposition temperature on mechanical and tribological properties of a-C:H:Si coatings on nitrided and postoxidized steel deposited by DC-PACVD. Surf. Coat. Technol. 203, 521–525 (2008)

    CAS  Google Scholar 

  63. 63.

    C. Zeng, Q. Chen, M. Xu, S. Deng, Y. Luo, T. Wu, Enhancement of mechanical, tribological and morphological properties of nitrogenated diamond-like carbon films by gradient nitrogen doping. Diam. Relat. Mater. 76, 132–140 (2017)

    CAS  Google Scholar 

  64. 64.

    N. Kaushik, P. Sharma, M. Nishijima, A. Makino, M. Esashi, S. Tanaka, Structural, mechanical and optical properties of thin films deposited from a graphitic carbon nitride target. Diam. Relat. Mater. 66, 149–156 (2016)

    CAS  Google Scholar 

  65. 65.

    N. Dwivedi, S. Kumar, Nanoindentation testing on copper/diamond-like carbon bi-layer films. Curr. Appl. Phys. 12, 247–253 (2012)

    Google Scholar 

  66. 66.

    S. Kumar, N. Dwivedi, C. Rauthan, Investigation of radio frequency plasma for the growth of diamond like carbon films. Phys. Plasmas 19, 033515 (2012)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Rezagholipour Dizaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarei Moghadam, R., Rezagholipour Dizaji, H. & Ehsani, M.H. Modification of optical and mechanical properties of nitrogen doped diamond-like carbon layers. J Mater Sci: Mater Electron 30, 19770–19781 (2019). https://doi.org/10.1007/s10854-019-02343-4

Download citation