Skip to main content
Log in

Photoluminescence properties of near ultraviolet excited Ca8La2(PO4)6O2:Sm3+ red orange phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel Ca8La2(PO4)6O2:Sm3+ phosphors are successfully synthesized in air by the high temperature solid state reaction method. The X-ray diffraction patterns, morphology, energy spectrum diagram, elemental mapping, luminescence properties, concentration-dependent emission spectra, thermal stability, and decay curves are investigated. The excitation spectrum of Ca8La2(PO4)6O2:8%Sm3+ phosphor monitored at 604 nm extends the region from 220 nm to 520 nm with many excitation spectral bands because of the O2−–Sm3+ charge transfer band and the ff transitions of Sm3+ ion. Ca8La2(PO4)6O2:Sm3+ phosphor with excitation at 402 nm emits red orange light in the range of 550–770 nm with many emission spectral bands derived from the 4G5/2 → 6H5/2 (550–570 nm), 4G5/2 → 6H7/2 (570–630 nm), 4G5/2 → 6H9/2 (630–690 nm), and 4G5/2 → 6H11/2 (690–760 nm) transitions of Sm3+ ion, and the optimal Sm3+ concentration is ~ 8 mol%. The lifetime of Ca8La2(PO4)6O2:Sm3+ phosphor decreases from 1.39 to 1.11 ms with increasing Sm3+ concentration from 2 to 12 mol%. Ca8La2(PO4)6O2:Sm3+ phosphor has the good thermal stability and emission color stability. The luminous mechanism, concentration quenching, and thermal quenching are explained, respectively. The experimental results indicate that Ca8La2(PO4)6O2:Sm3+ phosphor as red orange component has a potential application in white LED based on near ultraviolet LED chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Zhang, C. Ma, R. Gautier, M.S. Molokeev, Q. Liu, Z. Xia, Adv. Funct. Mater. 28(41), 1804150 (2018)

    Article  Google Scholar 

  2. J. Xiang, J. Zheng, Z. Zhou, H. Suo, X. Zhao, X. Zhou et al., Chem. Eng. J. 356, 236–244 (2019)

    Article  CAS  Google Scholar 

  3. R. Cao, X. Wang, Y. Jiao, X. Ouyang, S. Guo, P. Liu et al., J. Lumin. 212, 23–28 (2019)

    Article  CAS  Google Scholar 

  4. T. Sakthivel, G. Annadurai, R. Vijayakumar, X. Huang, J. Lumin. 205, 129–135 (2019)

    Article  CAS  Google Scholar 

  5. W. Xiao, X. Liu, J. Zhang, J. Qiu, Adv. Opt. Mater. 7, 1801677 (2019)

    Article  Google Scholar 

  6. Q. Wang, J. Liao, H. Huang, H. Wen, J. Alloys Compd. 772, 499–506 (2019)

    Article  CAS  Google Scholar 

  7. C. Liao, R. Cao, W. Wang, W. Hu, G. Zheng, Z. Luo, P. Liu, Mater. Res. Bull. 97, 490–496 (2018)

    Article  CAS  Google Scholar 

  8. R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, Z. Hu, J. Phys. Chem. Solids 118, 109–113 (2018)

    Article  CAS  Google Scholar 

  9. X. Huang, H. Guo, Ceram. Int. 44, 10340–10344 (2018)

    Article  CAS  Google Scholar 

  10. B. Han, B. Liu, J. Zhang, Y. Dai, Optik 179, 346–350 (2019)

    Article  CAS  Google Scholar 

  11. A. Hooda, S.P. Khatkar, A. Khatkar, R.K. Malik, J. Dalal, S. Devi et al., Mater. Chem. Phys. 232, 39–48 (2019)

    Article  CAS  Google Scholar 

  12. Y. Zhang, J. Bin, L. Mei, Z. Huang, J. Lumin. 206, 645–648 (2019)

    Article  CAS  Google Scholar 

  13. J.C. Chang, C.T. Chen, M. Rudysh, M.G. Brik, M. Piasecki, W.R. Liu, J. Lumin. 206, 417–425 (2019)

    Article  CAS  Google Scholar 

  14. A. Yoshikawa, V.V. Kochurikhin, N. Futagawa, K. Shimamura, T. Fukuda, J. Cryst. Growth 204, 302–306 (1999)

    Article  CAS  Google Scholar 

  15. G. Zhu, Y. Shi, M. Mikami,Y. Shimomura, and Y. Wang, MRS Online Proceedings Library Archive, vol. 1592 (2014)

  16. G. Boulon, A. Collombet, A. Brenier, M.-T. Cohen-Adad, A. Yoshikawa, K. Lebbou et al., Adv. Funct. Mater. 11(4), 263–270 (2001)

    Article  CAS  Google Scholar 

  17. M. Shang, G. Li, D. Geng, D. Yang, X. Kang, Y. Zhang et al., J. Phys. Chem. C 116, 10222–10231 (2012)

    Article  CAS  Google Scholar 

  18. Y. Fang, F. Liu, J. Hou, Y. Zhang, X. Zheng, N. Zhang et al., J. Lumin. 177, 280–285 (2016)

    Article  CAS  Google Scholar 

  19. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  21. A. Santra, K. Panigrahi, S. Saha, N. Mazumder, A. Ghosh, S. Bakuli et al., J. Mater. Sci. Mater. Electron. 30, 6311–6321 (2019)

    Article  CAS  Google Scholar 

  22. G. Fan, X. Wang, X. Qiu, D. Fan, R. Hu, Z. Tian, Opt. Mater. 91, 363–370 (2019)

    Article  CAS  Google Scholar 

  23. M. Dai, K. Qiu, P. Zhang, W. Zhang, J. Mater. Sci. Mater. Electron. 30, 9184–9193 (2019)

    Article  CAS  Google Scholar 

  24. X. Wu, J. Zheng, Q. Ren, W. Bai, Y. Ren, O. Hai, Polyhedron 164, 17–22 (2019)

    Article  CAS  Google Scholar 

  25. L. Li, X. Tang, Z. Jiang, X. Zhou, S. Jiang, X. Luo et al., J. Alloys Compd. 701, 515–523 (2017)

    Article  CAS  Google Scholar 

  26. B. Ramesh, G.R. Dillip, G. Rajasekhara Reddy, B. Deva Prasad Raju, S.W. Joo, N. John Sushma et al., Optik 156, 906–913 (2018)

    Article  CAS  Google Scholar 

  27. C. Chiang, H.H. Su, Y. Fang, S. Chu, Ceram. Int. 44, 6278–6284 (2018)

    Article  CAS  Google Scholar 

  28. J. Zhao, D. Zhao, Z. Ma, M. Ma, B. Liu, W. Guo et al., Displays 59, 16–20 (2019)

    Article  Google Scholar 

  29. G. Liu, B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin, 2005)

    Google Scholar 

  30. D. Dxter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)

    Article  Google Scholar 

  31. R. Cao, H. Xiao, F. Zhang, X. Cheng, L. Su, F. Xiao et al., J. Mater. Sci. Mater. Electron. 30, 2327–2333 (2019)

    Article  CAS  Google Scholar 

  32. F.B. Xiong, H. Chen, H.F. Lin, X.G. Meng, E. Ma, W.Z. Zhu, J. Lumin. 209, 89–94 (2019)

    Article  CAS  Google Scholar 

  33. P. Chen, W. Hu, D. Yang, J. Zhu, J. Zhang, Y. Wu, Physica B 530, 127–132 (2018)

    Article  CAS  Google Scholar 

  34. J. Li, R. Pang, Z. Yu, L. Liu, H. Wu, H. Li et al., J. Rare Earth. 36, 680–684 (2018)

    Article  CAS  Google Scholar 

  35. C.T. Chen, T.J. Lin, M.S. Molokeev, W.R. Liu, Dyes Pigments 150, 121–129 (2018)

    Article  CAS  Google Scholar 

  36. G. Zhu, Z. Li, F. Zhou, C. Wang, S. Xin, J. Lumin. 196, 32–35 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51862015 and 51702051), Foundation of Jiang’xi Educational Committee (No. GJJ180564), Natural Science Foundation of Guangdong province (No. 2017A030313307), and National Undergraduate Training Program for Innovation and Entrepreneurship of China (No. 201910419014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renping Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Xu, L., Lv, X. et al. Photoluminescence properties of near ultraviolet excited Ca8La2(PO4)6O2:Sm3+ red orange phosphor. J Mater Sci: Mater Electron 30, 19569–19577 (2019). https://doi.org/10.1007/s10854-019-02329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02329-2

Navigation