Skip to main content
Log in

Synthesis, chemical, theoretical studies, electrochemical, electrical and optical characterization of novel oligomer 2,2’-((1E,1’E)(2,5-bis(octyloxy)-1,4-phenylenevinylene)bis(6-(E)-2-(vinylquinolin))quinoline for OLED applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A fluorescent pentamer 5QnQnPV with one phenyl central donor group surrounded by four quinoline acceptor groups set in a quadrupolar A-π-A-π-D-π-A-π-A electronic structure was synthesized. This compound is an organic semiconductor and shows a wide band fluorescence emission that spans from the blue to the red region with a maximum peak centered at 509 nm. In addition, its HOMO (− 5.4 eV)/LUMO (− 3.5 eV) energy values, determined by cyclic voltammetry, optical gap EgOpt of 2.18 and theoretical DT-DFT studies indicated a potential for OLED fabrication. When such device was made with a ITO/PEDOT:PSS/5QnQnPV/Al configuration it displayed a maximum electroluminescent response at 860 nm. The structural and physical characterization of this compound was performed using 1H and 13C Nuclear Magnetic Resonance, Fourier Transformed Infrared Spectroscopy, Mass Spectroscopy and Atomic Force Microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Lee, J.H. Han, S.H. Lee, G.H. Baek, J.S. Park, JOM (2019). https://doi.org/10.1007/s11837-018-3150-3

    Article  Google Scholar 

  2. Y.F. Liu, J. Feng, Y.G. Bi, D. Yin, H.B. Sun, Adv Mater. Technol. (2019). https://doi.org/10.1002/admt.201800371

    Article  Google Scholar 

  3. W.K. Lee, Y.H. Huang, K.C. Pan, T.A. Lin, T. Chatterjee, K.T. Wong, C.C. Wu, J. Photonics Energy (2018). https://doi.org/10.1117/1.jpe.8.032105

    Article  Google Scholar 

  4. T. Iwanaga, M. Ogawa, T. Yamauchi, S. Toyota, J. Org. Chem. (2016). https://doi.org/10.1021/acs.joc.6b00364

    Article  Google Scholar 

  5. M. Brinkman, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. (2000). https://doi.org/10.1021/ja993608k

    Article  Google Scholar 

  6. A.P. Kulkarni, A.P. Gifford, C.J. Tonzola, S.A. Jenekhe, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1855415

    Article  Google Scholar 

  7. A.S. Shetty, E.B. Liu, R.J. Lachicotte, S.A. Jenekhe, Chem. Mater. (1999). https://doi.org/10.1021/cm981121p

    Article  Google Scholar 

  8. J.M. Hancock, A.P. Gifford, Y. Zhu, Y. Lou, S.A. Jenekhe, Chem. Mater. (2006). https://doi.org/10.1021/cm0613760

    Article  Google Scholar 

  9. C.J. Tonzola, J.M. Hancock, A. Babel, S.A. Jenekhe, Chem. Commun. (2005). https://doi.org/10.1039/b509322h

    Article  Google Scholar 

  10. C.J. Tonzola, A.P. Kulkarni, A.P. Gifford, W. Kaminsky, S.A. Jenekhe, Adv. Funct. Mater. (2007). https://doi.org/10.1002/adfm.200600542

    Article  Google Scholar 

  11. K. Agrawal, S.A. Jenekhe, Chem. Mater. (1996). https://doi.org/10.1021/cm9504753

    Article  Google Scholar 

  12. M.A. Hsu, T.J. Chow, J. Chin. Chem. Soc. (2005). https://doi.org/10.1002/jccs.200500114

    Article  Google Scholar 

  13. N. Lin, J. Qiao, L. Duan, J. Xue, L. Wang, Chem. Mater. (2014). https://doi.org/10.1021/cm5011604

    Article  Google Scholar 

  14. V.A. Montes, R. Pohl, J. Shinar, P. Anzenbacher, Chem. Eur. J. (2006). https://doi.org/10.1002/CHEM.200501403

    Article  Google Scholar 

  15. A. Kimyonok, X.Y. Wang, M. Weck, J. Macromol. Sci. Polym. Rev. (2006). https://doi.org/10.1080/15321790500471210

    Article  Google Scholar 

  16. S. Qi, K. Shi, H. Gao, Q. Liu, H. Wang, Molecules (2007). https://doi.org/10.3390/12050988

    Article  Google Scholar 

  17. K. Barthelmes, J. Kübel, A. Winter, M. Wachtler, C. Friebe, B. Dietzek, U.S. Schubert, Inorg. Chem. (2015). https://doi.org/10.1021/ic502431x

    Article  Google Scholar 

  18. F. Babudri, G.M. Farinola, L.C. Lopez, M.G. Martinelli, F. Naso, J. Org. Chem. (2001). https://doi.org/10.1021/jo001795v

    Article  Google Scholar 

  19. D.M. Johansson, X. Wang, T. Johansson, O. Inganas, G. Yu, G. Srdanov, M.R. Andersson, Macromolecules (2002). https://doi.org/10.1021/ma011768m

    Article  Google Scholar 

  20. J.F. Montiel, P. García, R.A. Vázquez, A.I. Martínez, J.L. Maldonado, J. Coreño, O. Coreño, Adv. Mater. Res. A 976, 80–85 (2014)

    Article  Google Scholar 

  21. N. Reyes, R. Vázquez, E. Arias, I. Moggio, M. Rodríguez, R.F. Ziolo, O. Rodríguez, R. Evans, C. Liebig, New J. Chem. (2014). https://doi.org/10.1039/C3NJ01193C

    Article  Google Scholar 

  22. C.M. Cardona, W. Li, A.E. Kaifer, D. Stockdale, G.C. Bazan, Adv. Mater. (2011). https://doi.org/10.1002/adma.201004554

    Article  Google Scholar 

  23. D.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, D.J. Hratchian, J. Am. Chem. (2009). https://doi.org/10.1021/ja5111392

    Article  Google Scholar 

  24. C. Wu, S.V. Malinin, S. Tretiak, V.Y. Chernyak, Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.100.057405

    Article  Google Scholar 

  25. S.H. Jang, J.W. Park, Mol. Cryst. Liq. (2007). https://doi.org/10.1080/15421400701548472

    Article  Google Scholar 

  26. J. Hancock, M.P. Gifford, C.J. Tonzola, S.A. Jenekhe, J. Phys. Chem. C (2007). https://doi.org/10.1021/jp069037h

    Article  Google Scholar 

  27. T. Johansson, W. Mammo, M. Svensson, M.R. Andersson, O. Inganas, J. Mater. Chem. (2003). https://doi.org/10.1039/b301403G

    Article  Google Scholar 

  28. S. Kotowicz, M. Siwy, M. Filapek, J.G. Malecki, K. Smolarek, J. Grzelak, S. Mackowski, A. Slodek, E. Schab-Balcerzak, J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2016.11.058

    Article  Google Scholar 

  29. A.R. Gutiérrez, R.A. Vázquez, I. Moggio, E. Arias, O. Coreño, J.L. Maldonado, G. Ramos-Ortíz, O. Rodríguez, R.M. Jiménez-Barrera, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.01.019

    Article  Google Scholar 

  30. H. Li, C. Liu, B. Dai, X. Tang, Z.J. Zhang, Z. Xiong, X. Liu, J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.42498

    Article  Google Scholar 

  31. X. Meng, T. Harricharran, L.J. Juszczak, Photochem. Photobiol. (2013). https://doi.org/10.1111/j.1751-1097.2012.01219.x

    Article  Google Scholar 

  32. R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. (2007). https://doi.org/10.1039/B617972J

    Article  Google Scholar 

  33. S. Banerjee, Z. Sun, E.Y. Hayden, D.B. Teplow, Y.L. Lyubchenko, ACS Nano (2017). https://doi.org/10.1021/acsnano.7b05434

    Article  Google Scholar 

  34. K. Tepper, J. Biernat, S. Kumar, S. Wegmann, T. Timm, S. Hubschmann, L. Redecke, E.M. Mandelkow, D.J. Muller, E. Mandelkow, J. Biol. Chem. (2014). https://doi.org/10.1074/jbc.M114.611368

    Article  Google Scholar 

  35. F. Guo, A. Karl, Q.F. Xue, K.C. Tam, K. Forberich, C.J. Brabec, Light Sci. Appl. (2017). https://doi.org/10.1038/lsa.2017.94

    Article  Google Scholar 

  36. J. Li, X. Han, Q. Bai, T. Shan, P. Lu, Y. Ma, J. Polym. Sci. Polym. Chem. (2017). https://doi.org/10.1002/pola.28414

    Article  Google Scholar 

  37. S. Mansurova, I. Cosme, A. Kosarev, A.J. Olivares, C. Ospina, H.E. Martinez, Polymers (2018). https://doi.org/10.3390/polym10101068

    Article  Google Scholar 

  38. S.A. Cabañas-Tay, L. Palacios-Huerta, M. Aceves-Mijares, A. Coyopol, F. Morales-Morales, S.A. Pérez-García, L. Licea-Jiménez, C. Domínguez-Horna, K. Monfil-Leyva, A. Morales-Sánchez, J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2016.11.043

    Article  Google Scholar 

  39. L. Palacios-Huerta, S.A. Cabañas-Tay, J.A. Luna-López, M. Aceves-Mijares, A. Coyopol, A. Morales-Sánchez, Nanotechnology (2015). https://doi.org/10.1088/0957-4484/26/39/395202

    Article  Google Scholar 

  40. T.M. Swager, J.H. Wosnick, MRS Bull. (2002). https://doi.org/10.1557/mrs2002.143

    Article  Google Scholar 

  41. W. Wrigtht, Polym. Int. (1991). https://doi.org/10.1002/pi.4990270122

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support given by INAOE to construct and study the OLED described in this work. Financial support from CONACyT-SEP project 221360, Catedras Conacyt project 2734 at INAOE and a scholarship (490547) to the first author are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Synthesis, chemical and electrochemical characterization of the 5QnQnPV were conducted by AVS-M, RAV-G, JRV-H, OJH-O, VGI-G and AA-H. The fabrication and electrical characterization of the OLEDs were conducted by JC, IC and KA-A. The electroluminescence studies were conducted by LP-H and the theoretical study (DFT) by OJH-O . All authors contributed equally to the analysis and interpretation of the results. All the authors are in agreement with the last version.

Corresponding author

Correspondence to Rosa Angeles Vázquez-García.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Mendoza, A.V., Ibarra-García, V.G., Velázquez-Hernández, J.R. et al. Synthesis, chemical, theoretical studies, electrochemical, electrical and optical characterization of novel oligomer 2,2’-((1E,1’E)(2,5-bis(octyloxy)-1,4-phenylenevinylene)bis(6-(E)-2-(vinylquinolin))quinoline for OLED applications. J Mater Sci: Mater Electron 30, 19718–19730 (2019). https://doi.org/10.1007/s10854-019-02322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02322-9

Navigation