Skip to main content
Log in

An enhancement of ferromagnetic, structural, morphological, and optical properties of Mn-doped Cu2O thin films by an electrodeposition technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Mn-doped Cu2O (Cu2−x MnxO; x = 0–3 mM) thin films were deposited over a fluorine-doped tin oxide glass substrate by using electrodeposition along with CuSO4 and MnSO4 as sources. An enhancement of Mn doping on structural, morphological, optical and magnetic properties of the Cu2O films was investigated in detail. X-ray diffraction patterns reveal that the deposited films are cubic crystal in structure with predominant orientation along (111) the direction. The crystallite size increases from 29.03 to 39.40 nm with an increase in Mn concentration. Morphological studies show that the grain size of the films increase with an increase in Mn doping concentration and the peculiar morphology of plate shape is obtained at 3 mM Mn doping. From the AFM analysis, the surface roughness of the films increases with an increase in Mn concentration. X-ray photoelectron spectroscopy analysis confirms the presence of manganese (Mn2+) as a dopant in the host Cu2O thin films. Optical studies show that the absorbance and band gap of the films increase with an increase in Mn concentrations. Magnetic measurement study indicates that the pure and the minimum doped (0.75, 1.5 mM) Cu2O films show diamagnetic behavior and Mn doping level increases to maximum (2.25, 3 mM) exhibiting a good ferromagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.A. Mousavi, M. Hassanpour, M.S. Nisari, H.S. Hojaghan, DY2O3/CuO nano composites microwave assisted synthesis and investigated photocatalytic properties. J. Mater. Sci.: Mater. Electron. 29, 1238–1245 (2018)

    CAS  Google Scholar 

  2. Y.L. Liu, S. Harrinton, K.A. Yates, M. Wei, Epitaxial ferromagnetic Cu2−xMnxO films on (001) Si by near room temperature electrodeposition. Appl. Phys. Lett. 87, 222108–222211 (2005)

    Google Scholar 

  3. P.P. Murmu, J. Kennedy, G.V.M. Williams, B.J. Ruck, Observation of magnetism, low resistivity and magneto resistance in the near-surface region of Gd implanted ZnO. Appl. Phys. Lett. 101, 082408 (2012)

    Google Scholar 

  4. E. Liu, P. Xiao, J.S. Chen, Ni-doped ZnO thin films for the diluted magnetic semiconductor material. Curr. Appl. Phys. 8, 408–411 (2008)

    Google Scholar 

  5. A. Stowell, E. Sanders, Synthesis and characterization of dilute magnetic semiconductor manganese-doped indium arsenide nanocrystals. J. Nano. Lett. 10, 1441–1447 (2003)

    Google Scholar 

  6. M. Lohar, R.K. Kamble, S.T. Punde, Electrochemical synthesis of Ni-doped ZnSe thin film for photo electrochemical cell application. J. Mater. Focus. 5, 481–484 (2016)

    CAS  Google Scholar 

  7. C. Brandt, A. Tumelero, J. Douglas, Enhanced defect- mediated ferromagnetism in Cu2O by Co doping. J. Magn. Magn. Mater. 441, 374–386 (2017)

    CAS  Google Scholar 

  8. P.K. Pagare, A.P. Torane, Electrodeposition and characterization of pH transformed Cu2O thin films for electrochemical sensor. J. Mater. Sci: Mater Electrons. 28(2), 1386–1392 (2016)

    Google Scholar 

  9. K.P. Ganesan, G. Sivakumar, N. Anandhan, T. Marimuthu, R. Panneerselvam, Influence of bath temperatures on physical and electrical properties of potentiostatically deposited Cu2O thin films for heterojunction solar cell applications. J. Opt. Quantum Electron. 50, 281–295 (2019)

    Google Scholar 

  10. D. Snoke, Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002)

    CAS  Google Scholar 

  11. M. Wei, N. Broddors, D. Zhi, P.A. Midgley, Room temperature ferromagnetism in bulk Mn doped Cu2O. Appl. Phys. Lett. 86, 0725514 (2005)

    Google Scholar 

  12. J.K. Furdyne, Diluted magnetic semiconductors. J. Appl. Phys. 64(4), R29–R64 (1998)

    Google Scholar 

  13. Y. Zhang, L. Pan, H. Zhu, H. Qiu, Fabrication and characterization of Mn-doped Cu2O thin films grown by RF magnetron sputtering. J. Magn. Magn. Mater. 320, 3303–3306 (2008)

    CAS  Google Scholar 

  14. M. Ivill, M.E. Overberg, C.R. Abernathy, D.P. Norton, Properties of Mn-doped Cu2O semiconductivity thin films grown by pulsed-laser deposition. Solid State Electron. 47, 2215–2220 (2003)

    CAS  Google Scholar 

  15. L. Pan, H. Zhu, C. Fan, W. Wang, Mn-doped Cu2O thin films grown by RF magnetron sputtering. J. Appl. Phys. 97, 10D318–10D320 (2005)

    Google Scholar 

  16. S.H. Lee, S.J. Yun, J.W. Lim, The characteristics of Cu2O thin films deposited using RF magnetron sputtering method with nitrogen ambient. J. ETRI 35(6), 1156–1159 (2013)

    Google Scholar 

  17. D. Osorio-Rivera, G. Torred-Delgado, J. Marquez-Marin, Cuprous oxide thin films obtained by spray-pyrolysis technique. J. Mater. Sci.: Mater. Electron. 29, 851–857 (2018)

    CAS  Google Scholar 

  18. D.S.C. Halin, I.A. Talib, A.R. Daud, Characterization of cuprous oxide thin films prepared by sol-gel spin coatings technique with different additive for photoelectrochemical solar cell. J. Photoenergy 2014, 1–6 (2014)

    Google Scholar 

  19. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu, Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vaccum 83, 927–935 (2009)

    CAS  Google Scholar 

  20. S. Eisermann, A. Kronen Berger, A. Laufer, Copper oxide thin films by chemical vapor, synthesis, characterization, and properties. J. Phys. Status Solidi (a) 209(3), 531–536 (2012)

    CAS  Google Scholar 

  21. A. Karapetyan, A. Reymers, S. Giorgio, C. Fauquet, L. Sajti, Cuprous oxide thin films prepared by thermal oxidation of copper layer, morphological and optical properties. J. Luminescence 159, 325–332 (2015)

    CAS  Google Scholar 

  22. K.P. Ganesan, N. Anandhan, T. Marimuthu, R. Panneerselvam, Effect of deposition potential on the synthesis, structural, morphological and photoconductivity response of Cu2O thin films by electrodeposition technique. J. Acta. Metall. Sin. 5, 1–10 (2019)

    Google Scholar 

  23. Y. Giilen, F. Bayansal, B. Sahin, H.A. Cetinkara, Fabrication and characterization of Mn-doped CuO thin films by the sillar method. J. Ceram. Int. 39, 6475–6480 (2013)

    Google Scholar 

  24. H. Shaban, S.A. Gad, B.A. Mansour, S.H. Mousafa, The influence of substrate temperature and thickness on optical and electrical conductivity CuIn(Se0.25S0.75)2. J. Inorg. Org. Met. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01267-0

    Article  Google Scholar 

  25. A.T. Ravichandran, K. Dhanabalan, K. Ravichandran, R. Mohan, Tuning the structural and optical properties of SILAR-deposited Cu2O films through Zn doping. Acta Metall. Sin. 28(8), 1041–1046 (2015)

    CAS  Google Scholar 

  26. K.P. Ganesan, N. Anandhan, V. Dharuman, R. Pannerselvam, T. Marimuthu, Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films. Result Phys. 7, 82–86 (2017)

    Google Scholar 

  27. M. Hasspour, M.S. Niasari, S.A. Mousari, S.A. Mousavl, CeO2/ZnO ceramic nanocomposites synthesized Via microwave method and used for decolorization of dye. J. Nanostruct. 8(1), 97–106 (2018)

    Google Scholar 

  28. S. Suwanboon, P. Amornpitoksule, A. Sukolrat, Dependence of optical properties on doping metal crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al, Mg, Ti). J. Ceram. Int. 37, 1359–1365 (2011)

    CAS  Google Scholar 

  29. K. Dhanabalan, A.T. Ravichandran, K. Ravichandran, S. Valanarasu, Effect of co-doped material on the structural, optical, and magnetic properties of Cu2O thin films by electrodeposition method. J. Mater. Sci.: Mater. Electron. 28(5), 4431–4439 (2016)

    Google Scholar 

  30. B. Radha, R. Rathi, K.C. Lalithambika, K. Ravichandran, Effect of Fe doping on the photocatalytic activity of ZnO nano particles: experimental and theoretical investigations. J. Mater. Sci.: Mater. Electron. 24, 13474–13482 (2018)

    Google Scholar 

  31. O. Messaoudi, I.B. Assaker, M. Gnnouni, A. Soulssi, Structural morphological and electrical characteristic of electrodeposited Cu2O: effect of deposition time. Appl. Surf. Sci. 366, 383–388 (2016)

    CAS  Google Scholar 

  32. M.S. Arani, M.S. Niasari, A facile and realiable route to prepare of lead sulphate nanostructure in the presence of a new sulfur source. J. Mater. Sci.: Mater. Electron. 26, 1518–1524 (2015)

    Google Scholar 

  33. H.S. Hojaghan, O. Amiri, M. Hassanpour, M.P. Kalameui, M.S. Niasari, S, N, Co-doped grapheme quantum dots-induced ascorbic acid fluorescent sensor: design characterization and performance. Food Chem. 295, 530–536 (2019)

    Google Scholar 

  34. M. Izaki, S. Sasaki, F.B. Mohamed, T. Shinagawa, T. Ohta, Effect of preparation temperature on optical and electrical characterizations (111) oriented Cu2O films electrodeposited on (111)—Au film. Thin Solid Films 520, 1779–1783 (2012)

    CAS  Google Scholar 

  35. M. Izaki, S. Watase, H. Takahashi, Low-temperature electrodeposition of room temperature ultraviolet-light emitting ZnO. J. Appl. Phys. 15, 2000–2002 (2003)

    CAS  Google Scholar 

  36. K.P. Ganesan, N. Anandhan, A. AmaliRoselin, R. Thangamuthu, T. Marimuthu, R. Panneerselvam, Tuning the magnetic properties of electrochemically deposited Cu2O thin films by Fe incorporation. J. Mater. Sci.: Mater. Electron. 30, 15482–15492 (2019)

    CAS  Google Scholar 

  37. F. Amano, T. Ebina, B. Ohtani, Enhancement of photochromic stability of copper (I) oxide electrodes by surface etching treatment. Thin Solid Films 550, 340–346 (2014)

    CAS  Google Scholar 

  38. O. Messaoudi, H. Mahlleouf, A. Souissi, I. Benassaker, Correlation between optical and structural properties of copper oxides electrodeposited on ITO glass. J. Alloys. Compd. 611, 142–148 (2014)

    CAS  Google Scholar 

  39. G. Elfadill, M.R. Hashin, M. Chahrour, The influence of Cu2O crystal structure on the Cu2O/ZnO heterojunction photovoltaic performance. J. Superlatt. Microstruct. 85, 908–917 (2015)

    CAS  Google Scholar 

  40. Y.K. Hsu, C.H. Yu, Y.C. Chen, Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation. J. Power Sources 242, 541–547 (2013)

    CAS  Google Scholar 

  41. W.E. Mahmoud, A.A. Al-Ghamdi, F.A. Al-Agel, E. Al-Arfaj, Structure and properties of the Mn-doped CeO2 thin films grown on La AlO3 (001) Via a modified sol-gel spin coating technique. J. Alloys Compd. 640, 122–127 (2015)

    CAS  Google Scholar 

  42. J. Antony, Y. Qiang, M. Faheem, D. Meyer, D.E. Mocready, Ferromagnetic semiconductors nanocluster: co-doped Cu2O. Appl. Phys. Lett. 90, 0131061–0131063 (2007)

    Google Scholar 

  43. M. Hasspour, M.S. Niasari, S.A. Hossesini Tafreshi, Synthesis and characterization and antibacterial activities of Ni/ZnO nano composites using bis (salicyladehyde) complex precursor. J. Alloys Compd. 788, 383–390 (2019)

    Google Scholar 

  44. S.P. Meena, R. Ashok Kumar, E. Ranjith Kumar, Effects of Cr doping concentrations on structural, morphology mechanical, and magnetic properties of electroplated NiCoCr thin films. J. Org. Organomet. Polym. Mater. 29, 1094–1099 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding and support from the RUSA-Phase 2.0 Grant sanctioned vide Letter. No. F. 24-51/2014-U, Policy (TNMulti-Gen), Department of Education, Govt. of India. Dt. 09.10.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Anandhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, K.P., Anandhan, N., Gopu, G. et al. An enhancement of ferromagnetic, structural, morphological, and optical properties of Mn-doped Cu2O thin films by an electrodeposition technique. J Mater Sci: Mater Electron 30, 19524–19535 (2019). https://doi.org/10.1007/s10854-019-02318-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02318-5

Navigation