Skip to main content
Log in

Barium deficiency and sintering temperature effects on structural and transport properties of La0.5Eu0.2Ba0.3−xxMnO3 manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La0.5Eu0.2Ba0.3−xxMnO3 (x = 0.00, 0.05 and 0.15) samples were prepared using sol–gel method and annealed at Ts = 750 and 950 °C. The X-ray diffraction technique shows that all samples crystallize in the rhombohedral structure with R-3c space group. Electrical properties of the prepared compounds were investigated using impedance spectroscopy technique in a wide temperature range (80–440 K). The results show a semiconductor behavior for all samples. From dc-conductivity (σdc) analysis, it is observed that increasing barium-deficiency content and sintering temperature improves the electrical conductivity. It is also found that the conduction mechanism is governed by hopping process. Ba-deficiency and sintering temperature affects the activation energy (Ea). From σdc, in the temperature range of 250–480 K and at Ts = 750 °C, it is found that Ea1 decreases from 190 meV for x = 0.00 to 164 meV for x = 0.15. Also, for x = 0.00, Ea1 decreases from 165 meV at Ts = 750 °C to 145 meV at Ts = 950 °C. Complex impedance analysis indicates the presence of non-Debye type relaxation. Such analysis confirms the contribution of grain boundary on the conduction. The activation energy Ea2 deduced from dc-conductivity matches very well with the value estimated from relaxation time (E) indicating that relaxation and transport mechanisms are related to the same defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Hennion, S. Petit, A. Ivanov, D. Lamago, J.P. Castellan, Interacting chains of orbital polarons in the colossal magnetoresistance material La1−xSrxMnO3 revealed by spin and lattice dynamics. Phys. Rev. B 99, 214416 (2019)

    CAS  Google Scholar 

  2. A. Trukhanov, L. Panina, S. Trukhanov, V. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102 (2016)

    Google Scholar 

  3. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range. J. Alloys. Compd. 689, 383 (2016)

    CAS  Google Scholar 

  4. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822 (2017)

    CAS  Google Scholar 

  5. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Google Scholar 

  6. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousand fold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 (1994)

    CAS  Google Scholar 

  7. Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach Science, New York, 2000)

    Google Scholar 

  8. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Normal and inverse magnetocaloric effect and short-range ferromagnetic interaction in (Pr, Sm)0.5Sr0.5MnO3 phase separated manganite. J. Alloys Compd. 688, 1214 (2016)

    CAS  Google Scholar 

  9. U.H. Anderson, Review of p-type doped perovskite materials for SOFC and other applications. Solid State. Ion. 52, 33 (1992)

    CAS  Google Scholar 

  10. N.Q.J. Minh, Ceramics fuel cells. Am. Ceram. Soc. 76, 563 (1993)

    CAS  Google Scholar 

  11. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhanced relative cooling power in Ga-doped La0.7(Sr, Ca)0.3MnO3 with ferromagnetic-like canted state. RSC Adv. 6, 53602 (2016)

    Google Scholar 

  12. Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, Z.H. Fang, S. Liu, C.Q. Tang, Large room temperature magnetoresistance in YSZ doped La0.67Ba0.33MnO3 composite. Solid State Commun. 127, 572 (2003)

    Google Scholar 

  13. N. Khare, D.P. Singh, H.K. Gupta, P.K. Siwach, O.N. Srivastava, Preparation and study of silver added La0.67Ca0.33MnO3 film. J. Phys. Chem. Sol. 65, 867 (2004)

    CAS  Google Scholar 

  14. S. Tarhouni, A. Mleiki, I. Chaaba, H.B. Khelifa, W. Cheikhrouhou-Koubaa, M. Koubaa, E.K. Hlil, Structural, magnetic and magnetocaloric properties of Ag-doped Pr0.5Sr0.5−xAgxMnO3 manganites (0.0 ≤ x ≤ 0.4). Ceram. Int. 43, 133 (2017)

    CAS  Google Scholar 

  15. A. Arabi, M. Fazli, M.H. Ehsani, Tuning the morphology and photocatalytic activity of La0.7Ca0.3MnO3 nanorods via different mineralizer-assisted hydrothermal syntheses. Mater. Res. Bull. 90, 205 (2017)

    CAS  Google Scholar 

  16. F. Rahmani Afje, M.H. Ehsani, Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis. Mater. Res. Exp. 5, 045012 (2018)

    Google Scholar 

  17. O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J.D. Jorgensen, S. Short, C.E. Botez, P.W. Stephens, Effects of A-site ordering on the structures and properties of La1−xBaxMnO3 (x ∼ 0.5). Phys. Rev. B 72, 104426 (2005)

    Google Scholar 

  18. K. Dörr, Ferromagnetic manganites: spin-polarized conduction versus competing interactions. J. Phys. D 39, R125 (2006)

    Google Scholar 

  19. E. Dagotto, Complexity in strongly correlated electronic systems. Science 309, 257 (2005)

    CAS  Google Scholar 

  20. R. Selmi, W. Cherif, L. Fernández Barquín, M. de la Fuente Rodríguez, L. Ktari, Structure and spin glass behavior in La0.77Mg0.23−x□xMnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloy Compd. 738, 528 (2018)

    CAS  Google Scholar 

  21. S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3-x/2 perovskite manganites. J. Mater. Chem. 13, 347 (2003)

    CAS  Google Scholar 

  22. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, Magnetic phase transitions in the anion-deficient La1−xBaxMnO3−x/2 (0 ≤ x ≤ 0.50) manganites. J. Phys. 15, 1783 (2003)

    CAS  Google Scholar 

  23. I. Mansuri, D. Varshney, Structure and electrical resistivity of La1−xBaxMnO3 (0.25 ≤ x≤0.35) perovskites. J. Alloys. Compd. 513, 256 (2012)

    CAS  Google Scholar 

  24. J. Dhahri, A. Dhahri, E. Dhahri, Structural, magnetic and magnetocaloric properties of La0.7-xEuxBa0.3MnO3 perovskites. J. Magn. Magn. Mat. 321, 4128 (2009)

    CAS  Google Scholar 

  25. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO: the structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskite. J. Alloy Compd. 690, 890 (2017)

    CAS  Google Scholar 

  26. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)

    Google Scholar 

  27. C.-X. Li, B. Yang, S.-T. Zhang, R. Zhang, W.-W. Cao, Effects of sintering temperature and poling conditions on the electrical properties of Ba0.70Ca0.30TiO3 diphasic piezoelectric ceramics. Ceram. Int. 39, 2967 (2013)

    CAS  Google Scholar 

  28. P. Dey, T.K. Nath, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface. Phys. Rev. B 73, 214425 (2006)

    Google Scholar 

  29. A. Dutta, N. Gayathri, R. Ranganathan, Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3. Phys. Rev. B 68, 054432 (2003)

    Google Scholar 

  30. S. Othmani, M. Bejar, E. Dhahri, E.K. Hlil, The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds. J. Alloys Compd. 475, 46 (2009)

    CAS  Google Scholar 

  31. R. M’nassri, N. Chniba Boudjada, A. Cheikhrouhou, Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites. J. Alloys Compd. 626, 20 (2015)

    Google Scholar 

  32. G. Venkataiah, D.C. Krishna, M. Vithal, S.S. Rao, S.V. Bhat, V. Prasad, S.V. Subramanyam, P. Venugopal Reddy, Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3. Phys. B 357, 370 (2005)

    CAS  Google Scholar 

  33. H. Baaziz, N.K. Maaloul, A. Tozri, H. Rahmouni, S. Mizouri, K. Khirouni, E. Dhahri, Effect of sintering temperature and grain size on the electrical transport properties of La0.67Sr0.33MnO3 manganite. Chem. Phys. Lett. 640, 77 (2015)

    CAS  Google Scholar 

  34. A. Arroyo, J.M. Alonso, R. Cortés-Gil, J.M. Gonzalez-Calbet, A. Hernando, J.M. Rojo, M. Vallet-Regi, Room-temperature CMR in manganites with 50% Mn4+ by generation of cationic vacancies. J. Magn. Magn. Mater. 272, 1748 (2004)

    Google Scholar 

  35. S. Hébert, B. Wang, A. Maignan, C. Martin, R. Retoux, B. Raveau, Vacancies at Mn-site in Mn3+ rich manganites: a route to ferromagnetism but not to metallicity. Solid State Commun. 123, 311 (2002)

    Google Scholar 

  36. M. Oumezzine, S. Kallel, O. Peña, N. Kallel, T. Guizouarn, F. Gouttefangeas, M. Oumezzine, Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33-x□xMnO3 (x = 0, 0.05, and 0.1) manganite. J. Alloys. Compd. 582, 640 (2014)

    CAS  Google Scholar 

  37. A. Mleiki, R. M’nassri, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Structural characterization, magnetic, magnetocaloric properties and critical behavior in lacunar La0.5Eu0.2Ba0.20.1MnO3 nanoparticles. J. Alloys Compd. 727, 1203 (2017)

    CAS  Google Scholar 

  38. A.B.J. Kharrat, E.K. Hlil, W. Boujelben, Tuning the magnetic and magnetotransport properties of Pr0.8Sr0.2MnO3 manganites through Bi-doping. Mater. Res. Exp. 5(12), 126107 (2018)

    Google Scholar 

  39. S.V. Trukhanova, I.O. Troyanchuka, N.V. Pushkareva, H. Szymczakb, The influence of oxygen deficiency on the magnetic and electric properties of La0.70Ba0.30MnO3–δ (0 ≤ δ ≤ 0 30) manganite with a perovskite structure. J. Exp. Theor. Phys. 95, 308 (2002)

    Google Scholar 

  40. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Great Britain, Oxford, 1979)

    Google Scholar 

  41. A. Ben Hafsia, N. Rammeh, M. Farid, M. Khitouni, Electrical conductivity and dielectric study of LaBaFe0.5Zn0.5MnO6−δ compound. Ceram. Int. 42, 3673 (2016)

    Google Scholar 

  42. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29 (2012)

    CAS  Google Scholar 

  43. R. Jemaï, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, Investigation of nickel effects on some physical properties of magnesium based ferrite. J. Alloys Compd. 705, 340 (2017)

    Google Scholar 

  44. S.B. Li, C.B. Wang, H.X. Liu, L. Li, Q. Shen, M.Z. Hu, L.M. Zhang, Effect of sintering temperature on structural, magnetic and electrical transport properties of La0.67Ca0.33MnO3 ceramics prepared by Plasma Activated Sintering. Mater. Res. Bull. 99, 73 (2018)

    CAS  Google Scholar 

  45. T. Rhimi, M. Toumi, K. Khirouni, S. Guermazi, AC conductivity, electric modulus analysis of KLi(H2PO4)2 compound. J. Alloys Compd. 714, 546 (2017)

    CAS  Google Scholar 

  46. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Rietveld analysis, magnetic, vibrational and impedance properties of (Bi1−xPrx)(Fe1−xZrx)O3. J. Mater. Sci. 24, 5023 (2013)

    CAS  Google Scholar 

  47. W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, Effects of oxygen deficiency on the transport and dielectric properties of NdSrNbO. J. Phys. Chem. Solids 117, 1 (2018)

    CAS  Google Scholar 

  48. M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J. Phys. D 43, 155401 (2010)

    Google Scholar 

  49. R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L.C. Costa, Electrical properties of Sn-doped Ba0.75Sr0.25Ti0.95O3 perovskite. Ceram. Int. 40, 9355 (2014)

    CAS  Google Scholar 

  50. S. El Kossi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, Structural and electric properties of La0.7Sr0.25Na0.05Mn0.9Ti0.1O3 ceramics. Physica B 440, 118 (2014)

    Google Scholar 

  51. M. Nadeem, M.J. Akhtar, Melting/collapse of charge orbital ordering and spread of relaxation time with frequency in La0.50Ca0.50MnO3+δ by impedance spectroscopy. J. Appl. Phys. 104, 103713 (2008)

    Google Scholar 

  52. M. Younas, M. Nadeem, M. Atif, R. Grossinger, Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J. Appl. Phys. 109, 093704 (2010)

    Google Scholar 

  53. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudary, Structural and impedance properties of Ba5DyTi3V7O30. J. Mater. Sci. 20, 565 (2009)

    CAS  Google Scholar 

  54. S. Thakur, R. Rai, I. Bdikin, M. Almeida Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19, 1 (2016)

    CAS  Google Scholar 

  55. R. Gaur, K.C. Singh, R. Laishram, Dependence of dielectric properties on sintering conditions of lead free KNN ceramics modified with Li–Sb. World Acad. Sci. Eng. Technol. 9, 579 (2015)

    Google Scholar 

  56. M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, Electrical conduction mechanism and transport properties of LiCrP2O7 compound. J. Alloys. Compd. 649, 642 (2015)

    CAS  Google Scholar 

  57. S. Zha, C. Xia, G. Meng, Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J. Power Sources 115, 44 (2003)

    CAS  Google Scholar 

  58. M.K. Shamim, S. Sharma, S. Sinha, E. Nasreen, Dielectric relaxation and modulus spectroscopy analysis of (Na0.47K0.47Li0.06) NbO3 ceramics. J. Adv. Dielectr. 7, 1750020 (2017)

    CAS  Google Scholar 

  59. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mleiki.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

khlifi, A., Mleiki, A., Rahmouni, H. et al. Barium deficiency and sintering temperature effects on structural and transport properties of La0.5Eu0.2Ba0.3−xxMnO3 manganites. J Mater Sci: Mater Electron 30, 19513–19523 (2019). https://doi.org/10.1007/s10854-019-02317-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02317-6

Navigation