Skip to main content
Log in

Anisotropy of thermoelectric composites 0.7 Ca3Co4O9/0.3 Bi2Ca2Co2Oy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The anisotropy of thermoelectric composites 0.7 Ca3Co4O9/0.3 Bi2Ca2Co2Oy were investigated. The X-ray diffraction analysis and the micro-morphology characterization in different planes were conducted. The results show in the plane perpendicular to the hot press direction, the diffraction directions are all along (00l), and the diffraction intensity is the strongest. The composites shows layered structure due to the plat-like Ca3Co4O9 sheets stacking along the hot press direction. The electrical resistivity ρ, Seebeck coefficient S and thermal conductivity κ in different directions were measured. The results show the thermoelectric parameters are strong direction dependence. With the measured direction deviating from the hot press direction, the electrical resistivity ρ and the thermal conductivity κ decline monotonically. Meanwhile, the ρ (θ = 0)/ρ (θ = 90) (θ defined as the angle between the measured direction and the hot press direction) decreases as the temperature rises, however, the κ (θ = 0)/κ (θ = 90) almost keeps constant over the whole temperature range. The Seebeck coefficient reaches the maximum when θ = 22.5 or 67.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  3. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  4. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685–12687 (1997)

    Article  Google Scholar 

  5. H. Ohta, W.S. Seo, K. Koumoto, Thermoelectric properties of homologous compounds in the ZnO–In2O3 system. J. Am. Ceram. Soc. 79, 2193–2196 (1996)

    Article  CAS  Google Scholar 

  6. H.J. Goldsmid, Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577–2592 (2014)

    Article  CAS  Google Scholar 

  7. K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, K. Koumoto, High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006)

    Article  Google Scholar 

  8. L.D. Zhao, J. He, D. Berardan, Y. Lin, J.F. Li, C.W. Nan, N. Dragoe, BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Soc. 7, 2900–2924 (2014)

    Article  CAS  Google Scholar 

  9. Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, T. Kajitani, Modulated structure of the thermoelectric compound [Ca2CoO3]0.62CoO2. J. Phys. Soc. Japan 71, 491–497 (2002)

    Article  CAS  Google Scholar 

  10. A.C. Mass, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166 (2000)

    Article  Google Scholar 

  11. D. Kenfaui, G. Bonnefont, D. Chateigner, G. Fantozzi, M. Gomina, Ca3Co4O9 ceramics consolidated by SPS process: optimisation of mechanical and thermoelectric properties. Mater. Res. Bull. 45, 1240–1249 (2010)

    Article  CAS  Google Scholar 

  12. T.F. Yin, D.W. Liu, Y. Ou, F.Y. Ma, S.H. Xie, J.F. Li, J.Y. Li, Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol-gel based electrospinning and spark plasma sintering. J. Phys. Chem. C 114, 10061–10065 (2010)

    Article  CAS  Google Scholar 

  13. M. Prevel, S. Lemonnier, Y. Klein, S. Hébert, D. Chateigner, B. Ouladdiaf, J.G. Noudem, Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. J. Appl. Phys. 98(093706), 1–4 (2005)

    Google Scholar 

  14. M. Mikami, K. Chong, D. Chateigner, E. Guilmeau, R. Funahashia, Thermoelectric properties–texture relationship in highly oriented Ca3Co4O9 composites. Appl. Phys. Lett. 85, 30 (2004)

    Google Scholar 

  15. O.J. Kwon, W. Jo, K.E. Ko, J.Y. Kim, S.H. Bae, H. Koo, S.M. Jeong, J.S. Kim, C. Park, Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multi-sheet cofiring technique. J. Mater. Sci. 46, 2887–2894 (2011)

    Article  CAS  Google Scholar 

  16. D. Kenfaui, D. Chateigner, M. Gomina, J.G. Noudem, Anisotropy of the mechanical and thermoelectric properties of hot-pressed single-layer and multilayer thick Ca3Co4O9 ceramics. Int. J. Appl. Ceram. Technol. 8, 214–226 (2011)

    Article  CAS  Google Scholar 

  17. D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, J.G. Noudem, Development of multilayer textured Ca3Co4O9 materials for thermoelectric generators: influence of the anisotropy on the transport properties. J. Eur. Ceram. Soc. 32, 2405–2414 (2012)

    Article  CAS  Google Scholar 

  18. N.B. Feng, Y.R. Jin, S.J. Guan, Y. He, L. Hao, Y. Lu, Synthesis of large diameter plat-like Ca3Co4O9 particle by molten salt method. J. Ceram. Process. Res 17, 1028–1032 (2016)

    Google Scholar 

  19. X.R. Liu, S.Y. Li, Y. He, Y. Lu, Y.R. Jin, N.B. Feng, Thermoelectric properties of 0.7 Ca3Co4 − xCuxO9/0.3Bi2Ca2Co2 − zCuzOy (x = 0, 0.05, 0.1; z = 0, 0.05, 0.1) composites. J. Mater. Sci. Mater. Electron. 28, 13414–13419 (2017)

    Article  CAS  Google Scholar 

  20. N.B. Feng, Y.W. Liao, Y. Lu, Y. He, Y.R. Jin, X.R. Liu, Effects of addition of Bi2Ca2Co2Oy on the thermoelectric properties of Ca3Co4O9 poly crystalline ceramics. Appl. Phys. A 124(432), 1–7 (2018)

    Google Scholar 

  21. H.Q. Liu, X.B. Zhao, F. Liu, Y. Song, Q. Sun, T.J. Zhu, Effect of Gd-doping on thermoelectric properties of Ca3Co4O9+δ ceramics. J. Mater. Sci. 43, 6933–6937 (2008)

    Article  CAS  Google Scholar 

  22. H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao, F.P. Wang, Thermoelectric properties of Ca3−xYxCo4O9+δ ceramics. J. Phys. Chem. Solids 70, 600 (2009)

    Article  CAS  Google Scholar 

  23. R.F. Klie, Q. Qiao, T. Paulauskas, A. Gulec, A. Rebola, S. Öğüt, M.P. Prange, J.C. Idrobo, S.T. Pantelides, S. Kolesnik, B. Dabrowski, M. Ozdemir, C. Boyraz, D. Mazumdar, A. Gupta, Observations of Co4+ in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca3Co4O9. Phys. Rev. Lett. 108, 196601 (2012)

    Article  CAS  Google Scholar 

  24. M.Y. Wang, Z.L. Tang, T.J. Zhu, X.B. Zhao, Effect of texture degree on anisotropic thermoelectric properties of (Bi, Sb)2(Te, Se)3 based solid solutions. RSC Adv. 00, 1–3 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. R. Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, N.B., Liao, Y.W., Li, S.Y. et al. Anisotropy of thermoelectric composites 0.7 Ca3Co4O9/0.3 Bi2Ca2Co2Oy. J Mater Sci: Mater Electron 30, 19471–19476 (2019). https://doi.org/10.1007/s10854-019-02312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02312-x

Navigation