Skip to main content

Advertisement

Log in

Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

3D hierarchical porous carbon is widely accepted as an ideal electrode material for supercapacitor. But template method is a complicated and expensive way to produce material with such a special structure. In this article, a two-step activation method is proposed. Two activating agents: H3PO4 and KOH, are involved in preparation process. By applying this method, the carbonization time can be reduced, the carbonization temperature can be decreased, and the amount of activating agent can be cut down. The specific capacitance of optimal product can reach 366 F g−1 @ 1 A g−1, and even 326 F g−1 @ 10 A g−1 in a two-electrode system using 6 M KOH as electrolyte. The excellent structure endows the product with excellent rate performance (the specific capacitance decreases 18% when the current density increases for 100 times) and cycle performance (95% retention after 5000 cycles). Rational process is benefit for reducing resistance and improving double layer characteristic. The maximum power density can reach 191.90 kW kg−1, and energy density can reach 49.54 W h kg−1. This paper also explores the mechanism of two-step activation and provided a new idea to build 3D hierarchical porous structure by a simple and environmentally friendly way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    CAS  Google Scholar 

  2. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014)

    Google Scholar 

  3. A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)

    CAS  Google Scholar 

  4. C. Long, T. Wei, J. Yan, L. Jiang, Z. Fan, Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano 7(12), 11325–11332 (2013)

    CAS  Google Scholar 

  5. A. Stein, Z. Wang, M.A. Fierke, Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21(3), 265–293 (2009)

    CAS  Google Scholar 

  6. Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011)

    CAS  Google Scholar 

  7. J. Li, K. Han, S. Li, Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. J. Mater. Sci. 29(10), 8480–8491 (2018)

    CAS  Google Scholar 

  8. W.G. Pell, B.E. Conway, W.A. Adams, J. De Oliveira, Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications. J. Power Sources 80(1–2), 134–141 (1999)

    CAS  Google Scholar 

  9. H. Sun, W. He, C. Zong, L. Lu, Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials. ACS Appl. Mater. Interfaces. 5(6), 2261–2268 (2013)

    CAS  Google Scholar 

  10. M. Biswal, A. Banerjee, M. Deo, S. Ogale, From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6(4), 1249–1259 (2013)

    CAS  Google Scholar 

  11. C. Long, L. Jiang, X. Wu, Y. Jiang, D. Yang, C. Wang et al., Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93, 412–420 (2015)

    CAS  Google Scholar 

  12. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6(20), 12120–12129 (2014)

    CAS  Google Scholar 

  13. T. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5(34), 17705–17733 (2017)

    CAS  Google Scholar 

  14. A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, J. Ozolinsh, Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte. New Carbon Mater. 32(4), 319–326 (2017)

    Google Scholar 

  15. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. 120(2), 379–382 (2008)

    Google Scholar 

  16. Y. Li, Z. Li, P.K. Shen, Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25(17), 2474–2480 (2013)

    CAS  Google Scholar 

  17. Z. Fan, Y. Liu, J. Yan, G. Ning, Q. Wang, T. Wei et al., Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2(4), 419–424 (2012)

    CAS  Google Scholar 

  18. Q. Wang, J. Yan, Y. Wang, G. Ning, Z. Fan, T. Wei et al., Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon 52, 209–218 (2013)

    CAS  Google Scholar 

  19. J.F. González, S. Román, C.M. González-García, J.V. Nabais, A.L. Ortiz, Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48(16), 7474–7481 (2009)

    Google Scholar 

  20. A. Anson, J. Jagiello, J.B. Parra, M.L. Sanjuan, A.M. Benito, W.K. Maser et al., Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108(40), 15820–15826 (2004)

    CAS  Google Scholar 

  21. J.S. Cha, J.-C. Choi, J.H. Ko, Y.-K. Park, S.H. Park, K.-E. Jeong et al., The low-temperature SCR of NO over rice straw and sewage sludge derived char. Chem. Eng. J. 156(2), 321–327 (2010)

    CAS  Google Scholar 

  22. K. Fu, Q. Yue, B. Gao, Y. Wang, Q. Li, Activated carbon from tomato stem by chemical activation with FeCl2. Colloids Surf. A 529, 842–849 (2017)

    CAS  Google Scholar 

  23. Q. Wen, C. Li, Z. Cai, W. Zhang, H. Gao, L. Chen et al., Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresour. Technol. 102(2), 942–947 (2011)

    CAS  Google Scholar 

  24. K. Fu, Q. Yue, B. Gao, Y. Sun, L. Zhu, Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation. Chem. Eng. J. 228, 1074–1082 (2013)

    CAS  Google Scholar 

  25. M.J. Ahmed, S.K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. J. Anal. Appl. Pyrolysis 99, 101–109 (2013)

    CAS  Google Scholar 

  26. R.H. Hesas, A. Arami-Niya, W.M.A.W. Daud, J. Sahu, Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation. J. Anal. Appl. Pyrolysis 104, 176–184 (2013)

    Google Scholar 

  27. H. Liu, J. Zhang, C. Zhang, N. Bao, C. Cheng, Activated carbons with well-developed microporosity and high surface acidity prepared from lotus stalks by organophosphorus compounds activations. Carbon 60, 289–291 (2013)

    CAS  Google Scholar 

  28. T.-H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158(2), 129–142 (2010)

    CAS  Google Scholar 

  29. J.I. Hayashi, M. Uchibayashi, T. Horikawa, K. Muroyama, V.G. Gomes, Synthesizing activated carbons from resins by chemical activation with K2CO3. Carbon 40(15), 2747–2752 (2002)

    CAS  Google Scholar 

  30. G. Dobele, T. Dizhbite, G. Rossinskaja, G. Telysheva, D. Meier, S. Radtke et al., Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1, 6-anhydrosaccharides in high yields. J. Anal. Appl. Pyrolysis 68, 197–211 (2003)

    Google Scholar 

  31. Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li et al., Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption. Chem. Eng. J. 217, 345–353 (2013)

    CAS  Google Scholar 

  32. M.A. Islam, M. Ahmed, W. Khanday, M. Asif, B. Hameed, Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J. Environ. Manag. 203, 237–244 (2017)

    CAS  Google Scholar 

  33. L. Qian, B. Chen, Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J. Agric. Food Chem. 62(2), 373–380 (2014)

    CAS  Google Scholar 

  34. H. Jin, S. Capareda, Z. Chang, J. Gao, Y. Xu, J. Zhang, Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation. Bioresour. Technol. 169, 622–629 (2014)

    CAS  Google Scholar 

  35. H. Xia, Y.S. Meng, G. Yuan, C. Cui, L. Lu, A symmetric RuO2/RuO2 supercapacitor operating at 16 V by using a neutral aqueous electrolyte. Electrochem. Solid-State Lett. 15(4), A60–A63 (2012)

    CAS  Google Scholar 

  36. P. Carrot, R. Roberts, K. Sing, Adsorption of nitrogen by porous and non-porous carbons. Carbon 25(1), 59 (1987)

    Google Scholar 

  37. J. Rouquerol, D. Avnir, C. Fairbridge, D. Everett, J. Haynes, N. Pernicone et al., Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 66, 1739–1758 (1994)

    CAS  Google Scholar 

  38. J. Rouquerol, D. Avnir, C. Fairbridge, D. Everett, J. Haynes, N. Pernicone et al., Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66(8), 1739–1758 (1994)

    CAS  Google Scholar 

  39. Y. Zhang, S. Liu, X. Zheng, X. Wang, Y. Xu, H. Tang et al., Biomass organs control the porosity of their pyrolyzed carbon. Adv. Funct. Mater. 27(3), 1604687 (2017)

    Google Scholar 

  40. A. Elmouwahidi, E. Bailón-García, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochim. Acta 229, 219–228 (2017)

    CAS  Google Scholar 

  41. C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun et al., Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27, 377–389 (2016)

    CAS  Google Scholar 

  42. M. Yu, Y. Han, J. Li, L. Wang, CO 2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 317, 493–502 (2017)

    CAS  Google Scholar 

  43. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)

    CAS  Google Scholar 

  44. S. Li, K. Han, P. Si, J. Li, C. Lu, High–performance activated carbons prepared by KOH activation of gulfweed for supercapacitors. Int. J. Electrochem. Sci. 13, 1728–1743 (2018)

    CAS  Google Scholar 

  45. C. Mao, Preparation and performance of activated carbon materials for supercapacitors, School of Energy & Environmental (Southeast University, Nanjing, 2015)

    Google Scholar 

  46. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22(3), 767–784 (2012)

    CAS  Google Scholar 

  47. C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13), 2511–2518 (2007)

    CAS  Google Scholar 

  48. J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia et al., Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 6, 8503 (2015)

    CAS  Google Scholar 

  49. G. Li, Y. Li, X. Qian, H. Liu, H. Lin, N. Chen et al., Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 115(6), 2611–2615 (2011)

    CAS  Google Scholar 

  50. J. Yan, Q. Wang, T. Wei, L. Jiang, M. Zhang, X. Jing et al., Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8(5), 4720–4729 (2014)

    CAS  Google Scholar 

  51. Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C.M. Holt et al., Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 7(5), 1708–1718 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding support by the Natural Science Foundation of Shandong, China (ZR2017MEE010), and the Fundamental Research Funds of Shandong University (2016JC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuihua Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Han, K., Qi, J. et al. Biomass-derived 3D hierarchical porous carbon by two-step activation method for supercapacitor. J Mater Sci: Mater Electron 30, 19415–19425 (2019). https://doi.org/10.1007/s10854-019-02303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02303-y

Navigation