Skip to main content
Log in

Dielectric dispersion in CoFe2O4/PVDF nanocomposites influenced by ceramic contents and thermal mediation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Characteristics like high dielectric constants, ferroelectric and coupled magnetic behaviour when combined in multiferroic materials become quite essential for use in numerous applications including multi-functional devices and also as multi-layer ceramic capacitors. In this context, ceramic polymer nanocomposites of CoFe2O4/polyvilylidene difluoride (CFO/PVDF) are prepared in this work. Energy dispersive X-ray spectra of the samples confirmed the presence of elements in the exact stoichiometric ratio. A field emission scanning electron microscope revealed the minute details of the morphological features of the composite films. In the frequency range of 20 Hz to 20 MHz, as frequency is increased, the dielectric constant (real and imaginary) and tangent loss show a decrease but with the increase in temperature and CFO concentration, the dielectric features show an increase. Electro active regions, resistance and relaxation frequencies of the samples have been explained using complex impedance spectroscopy. As frequency and temperature is increased, the conductivity increases as a result, due to an increase in concentration of CFO nanoparticles. The electric field induced polarization studied by precision ferroelectric tester shows a decreasing trend from a maximum value as some of the samples can show conductivity because polarization versus electric field (P–E) loop is elliptical shaped and these properties are of tremendous value for industrial and commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    CAS  Google Scholar 

  2. S. Shevlin, Nat. Mater. 18, 191 (2019)

    CAS  Google Scholar 

  3. D. Khomskii, Physics 2, 20 (2009)

    Google Scholar 

  4. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    CAS  Google Scholar 

  5. M. Fiebig, J. Phys. D 38(8), R123 (2005)

    CAS  Google Scholar 

  6. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442(7104), 759 (2006)

    CAS  Google Scholar 

  7. M. Fazeli, J.P. Florez, R.A. Simao, Composites B 163, 207–216 (2019)

    CAS  Google Scholar 

  8. S. Ebnesajjad, Fluoroplastics: melt processible fluoropolymers-the definitive user’s guide and data book, 2nd edn. (Elsevier, New York, 2003)

    Google Scholar 

  9. F.S. Foster, K.A. Harasiewicz, M.D. Sherar, I.E.E.E.T. Ultrason, Ferr. 47, 1363–1371 (2000)

    CAS  Google Scholar 

  10. S. Dash, R.N.P. Choudhary, M.N. Goswami, J. Alloys Compd. 715, 29–36 (2017)

    CAS  Google Scholar 

  11. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Ferroelectrics 57(1), 297–326 (1984)

    CAS  Google Scholar 

  12. H.S. Nalwa, J. Macromol. Sci-Pol. R 31(4), 341–432 (1991)

    Google Scholar 

  13. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39(4), 683–706 (2014)

    CAS  Google Scholar 

  14. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, M.T. Sebastian, Mater. Res. Bull. 48(4), 1681–1687 (2013)

    CAS  Google Scholar 

  15. W. Ma, H. Yuan, X. Wang, Membranes 4(2), 243–256 (2014)

    Google Scholar 

  16. N. Adhlakha, K.L. Yadav, M. Truccato, P. Rajak, A. Battiato, E. Vittone, Eur. Polym. J. 91, 100–110 (2017)

    CAS  Google Scholar 

  17. N. Adhlakha, K.L. Yadav, R. Singh, Smart Mater. Struct. 23(10), 105024 (2014)

    Google Scholar 

  18. P. Martins, C.M. Costa, G. Botelho, S. Lanceros-Mendez, J.M. Barandiaran, J. Gutierrez, Mater. Chem. Phys. 131(3), 698–705 (2012)

    CAS  Google Scholar 

  19. A.K. Batra, M.D. Aggarwal, M.E. Edwards, A. Bhalla, Ferroelectrics 366(1), 84–121 (2008)

    CAS  Google Scholar 

  20. W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, X.A. Li, J. Alloys Compd. 784, 117–124 (2019)

    CAS  Google Scholar 

  21. W. Zhang, X. Zhu, L. Wang, X. Xu, Q. Yao, W. Mao, X.A. Li, J. Supercond. Nov. Magn. 30(11), 3001–3005 (2017)

    CAS  Google Scholar 

  22. G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    CAS  Google Scholar 

  23. B. Luo, X. Wang, Y. Wang, L. Li, J. Mater. Chem. A 2(2), 510–519 (2014)

    CAS  Google Scholar 

  24. W. Caseri, Macromol. Rapid Commun. 21, 705–722 (2000)

    CAS  Google Scholar 

  25. C.H. Ho, C.D. Liu, C.H. Hsieh, K.H. Hsieh, S.N. Lee, Synth. Met. 158(15), 630–637 (2008)

    CAS  Google Scholar 

  26. C. Behera, R.N.P. Choudhary, J. Alloys Compd. 727, 851–862 (2017)

    CAS  Google Scholar 

  27. J. Rani, K.L. Yadav, S. Prakash, Composites B 79, 138–143 (2015)

    CAS  Google Scholar 

  28. B. Dhanalakshmi, P. Kollu, B.P. Rao, P.S. Rao, Ceram. Int. 42(2), 2186–2197 (2016)

    CAS  Google Scholar 

  29. M. Gul, Mater. Res. Bull. 76, 431–435 (2016)

    CAS  Google Scholar 

  30. M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, RSC Adv. 6(25), 20876–20885 (2016)

    CAS  Google Scholar 

  31. M.A. Elkestawy, J. Alloys Compd. 492(1–2), 616–620 (2010)

    CAS  Google Scholar 

  32. D.H. Kim, S.H. Lee, K.N. Kim, I.B. Shim, Y.K. Lee, J. Magn. Magn. Mater. 293(1), 320–327 (2005)

    CAS  Google Scholar 

  33. Q.S. Tang, D.S. Zhang, X.M. Cong, M.L. Wan, L.Q. Jin, Biomaterials 29(17), 2673–2679 (2008)

    CAS  Google Scholar 

  34. M.Z. Iqbal, Measurement 81, 102–112 (2016)

    Google Scholar 

  35. M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, J. Alloys Compd. 493, 553–560 (2010)

    CAS  Google Scholar 

  36. G. Brankovic, Z. Brankovic, V.D. Jovic, J.A. Varela, J. Electroceram. 7(2), 89–94 (2001)

    CAS  Google Scholar 

  37. R.N. Bhowmik, I.P. Muthuselvam, J. Alloys Compd. 589, 247–257 (2014)

    CAS  Google Scholar 

  38. J.F. Smith, P. Baumard, M.F.Denanot Abelard, J. Appl. Phys. 65(12), 5119–5125 (1989)

    CAS  Google Scholar 

  39. S.G. Kakade, R.C. Kambale, Y.D. Kolekar, C.V. Ramana, J. Phys. Chem. Solids 98, 20–27 (2016)

    CAS  Google Scholar 

  40. Y.J. Wong, J. Hassan, M. Hashim, J Alloys Compd. 571, 138–144 (2013)

    CAS  Google Scholar 

  41. R. Gerhardt, J. Phys. Chem. Solids 55(12), 1491–1506 (1994)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Atiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M., Khan, A.R., Mustafa, G.M. et al. Dielectric dispersion in CoFe2O4/PVDF nanocomposites influenced by ceramic contents and thermal mediation. J Mater Sci: Mater Electron 30, 19289–19301 (2019). https://doi.org/10.1007/s10854-019-02289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02289-7

Navigation