Skip to main content
Log in

Effects of Bi2O3, Sm2O3 content on the structure, dielectric properties and dielectric tunability of BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)BaTiO3–x (Bi2O3, Sm2O3) (BT–BS, x = 0.1, 0.15, 0.2, 0.25, 0.3) ceramics were prepared by traditional solid phase sintering method. The effects of structure, temperature and frequency on dielectric tunability, ferroelectric relaxation characteristics and dielectric loss were analyzed. Phase analysis by XRD showed that the main crystal phase was BaTiO3 perovskite structure, in addition to the second phase of Bi7.68Ti0.32O12.16 was also generated. The surface morphology was analyzed by SEM, it was found that the generation of second phase and the porosity decreased with the increase of BS content. At the same time, the increase of Sm3+ promoted the growth of crystal particles. The dielectric constant-temperature curve gradually became flat, which indicated that the relaxation characteristics of the ferroelectric ceramic gradually appear. The Curie temperature point gradually decreased with the doping of the BS. The relationship between dielectric loss and temperature showed that the dielectric loss increased when the temperature over 150 °C. This is mainly related to relaxation polarization at high temperature. Under the action of DC applied electric field and room temperature, dielectric loss and dielectric constant decreased with the increase of BS content. Meanwhile, dielectric tunability was improved when composite phase appeared. The maximum dielectric tunability (E = 50 kV/cm, 10 kHz) was 58.4% at x = 0.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Gevorgian, A. Vorobiev, A. Deleniv, Ferroelectrics in microwave devices, circuits and systems physics, modeling, fabrication and measurements, Engineering materials and processes (Springer, Berlin, 2009), pp. 61–113

    Google Scholar 

  2. Florent Marlec, C. Le Paven, Ferroelectricity and high tunability in novel strontium and tantalum based layered perovskite materials. J. Eur. Ceram. Soc. 38, 2526–2533 (2018)

    Article  CAS  Google Scholar 

  3. A. Ahmeda, I.A. Goldthorpe, A.K. Khandani, Electrically tunable materials for miceowave applications. Appl. Phys, Rev. 2, 011302 (2015)

    Article  Google Scholar 

  4. X. Lua, Y. Tong, L. Zhang, B. Ma, High dielectric tunability in composites prepared using SiO2 coated Ba0.5Sr0.5TiO3 nanoparticles. Ceram. Int. 44, 9875–9879 (2018)

    Article  Google Scholar 

  5. M.W. Cole, P.C. Joshi, M.H. Ervin, La doped Ba1−xSrxTiO3 thin films for tunable device applications. J. Appl. Phys. 89, 6336 (2001)

    Article  CAS  Google Scholar 

  6. O. Tikhomirov, H. Jiang, Direct observation of local ferroelectric phase transitions in BaxSra1−xTiO3 thin films. Appl. Phys. Lett. 77, 2048 (2000)

    Article  CAS  Google Scholar 

  7. M. Jain, N.K. Karan, R.S. Katiyar, Pb0.3Sr0.7TiO3 thin films for high-frequency phase shifter applications. Appl. Phys. Lett. 85, 275 (2004)

    Article  CAS  Google Scholar 

  8. J.-H. Koh, S.I. Khartsev, Ferroelectric silver niobate-tantalate thin films. Appl. Phys. Lett. 77, 4416 (2000)

    Article  CAS  Google Scholar 

  9. S. Halder, P. Victor, A. Laha, Pulsed excimer laser ablation growth and characterization of Ba(Sn0.1Ti0.9)O3 thin films. Solid. State. Commun. 121, 329–332 (2002)

    Article  CAS  Google Scholar 

  10. A. Ahmed, I.A. Goldthorpe, Electrically tunable materials for microwave applications. Appl. Phys. Rev. 2, 011302 (2015)

    Article  Google Scholar 

  11. J. Lesseur, D. Bernard, U.-C. Chung, M. Maglione, 3D mapping of anisotropic ferroelectric/dielectric composites. J. Eur. Ceram. Soc. 35, 337–345 (2015)

    Article  CAS  Google Scholar 

  12. R.E. Stanculescu, C.E. Ciomaga, N. Horchidan, C.G. Alassi, F.M. Tufescu, The influence of post-sintering re-oxidation treatment on dielectric response of dense and porous Ba0.7Sr0.3TiO3 ceramics. Ceram. Int. 42, 527–536 (2016)

    Article  CAS  Google Scholar 

  13. X.J. Chou, J.W. Zhai, X. Yao, Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3–Mg2TiO4 microwave composite ceramics. Appl. Phys. Lett. 91, 122908 (2007)

    Article  Google Scholar 

  14. W.F. Liao, R.H. Liang, G.S. Wang, F. Cao, X.L. Dong, Dielectric and tunable properties of columnar Ba0.6Sr0.4TiO3–MgO composites prepared by spark plasmas interring. Appl. Phys. Lett. 99, 202905 (2011)

    Article  Google Scholar 

  15. R. Liang, Z. Zhou, X. Dong, Enhanced dielectric tunability of Ba0.55Sr0.45TiO3–ZnAl2O4 composite ceramic. Ceram. Int. 41, S551–S556 (2015)

    Article  CAS  Google Scholar 

  16. M. Wei, J. Zhang, Effect of BiMO3 (M = Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43, 9593–9599 (2017)

    Article  CAS  Google Scholar 

  17. T. Oh, Dielectric relaxor properties in the system of (Naa1−xKx)1/2Bi1/2TiO3 Ceramics. Meas. Sci. Technol. 24, 094025 (2013)

    Article  Google Scholar 

  18. Y. Li, Y. Qu, Dielectric properties and substitution mechanism of samarium-doped Ba0.68Sr0.32TiO3 ceramics. Mater. Res. Bull. 44, 82–85 (2009)

    Article  CAS  Google Scholar 

  19. Xiangxiang Dong, H. Chen, Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4. J. Alloys Compd. 744, 721–727 (2018)

    Article  CAS  Google Scholar 

  20. N. Raengthon, T. Sebastian, D. Cumming, I.M. Reaney, D.P. Cann, BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 95(11), 3554–3561 (2012)

    Article  CAS  Google Scholar 

  21. M. Wei, J. Zhang, Relaxor behavior of BaTiO3–BiYO3 perovskite materials for high energy density capacitors. Ceram. Int. 43, 4768–4774 (2017)

    Article  CAS  Google Scholar 

  22. M. Kobune, Y. Tomoyoshi, Effects of MnO2 addition on piezoelectric and ferroelectric properties of PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 ceramics. J. Ceram. Soc. Jpn. 108(7), 633–637 (2000)

    Article  CAS  Google Scholar 

  23. E. Richard, A. Clive, New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3–PbTiO3 ceramics. Jpn. J. Appl. Phys. 40, 5999–6002 (2001)

    Article  Google Scholar 

  24. P.R. Ren, H.Q. Fan, X. Wang, Effects of magnesium doping on phase transitions and dielectric figure of merit of barium strontium titanate ceramics. Int. J. Appl. Ceram. Technol 9(2), 358–365 (2012)

    Article  CAS  Google Scholar 

  25. T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, X.X. Huang, Oxygen-vacancy-related high temperature dielectric relaxation in (Pb1–xBax)ZrO3 ceramics. J. Am. Ceram. Soc. 98, 551–558 (2015)

    Article  CAS  Google Scholar 

  26. M.A. Beuerlein, N. Kumar, T.-M. Usher, Current understanding of structure–processing–property relationships in BaTiO3–Bi(M)O3 dielectrics. J. Am. Ceram. Soc. 99(9), 2849–2870 (2016)

    Article  CAS  Google Scholar 

  27. V. Paunović, Lj Živković, V. Mitić, Influence of rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics. Sci. Sinter. 42, 69–79 (2010)

    Article  Google Scholar 

  28. R. Muhammad, Y. Iqbal, Enhanced dielectric properties in Nb-doped BT-BMT ceramics. Ceram. Int. 42, 19413–19419 (2016)

    Article  CAS  Google Scholar 

  29. S.-J. Yoon, A. Joshi, K. Uchino, Effect of additives on the electromechanical properties of Pb(Zr, Ti)O3–Pb(Y2/3W1/3)O3 ceramics. J. Am. Ceram. Soc. 80(4), 1035–1039 (1997)

    Article  CAS  Google Scholar 

  30. A.S. Shaikh, R.W. Vest, Dielectric properties of ultra fine grained BaTiO3. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 126–129 (1987)

    Google Scholar 

  31. S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr005Ti095O3 ceramics. Mater. Chem. Phys. 87, 256–263 (2004)

    Article  CAS  Google Scholar 

  32. M.M. Vijatović, R. Grigalaitis, N. Ilic, Interdependence between structure and electrical characteristics in Sm-doped barium titanate. J. Alloys Compd. 724, 959–968 (2017)

    Article  Google Scholar 

  33. T. Badapanda, S. Sarangi, B. Behera, S. Anwar, Structural and impedance spectroscopy study of samarium modified barium zirconium titanate ceramic prepared by mechanochemical route. Curr. Appl. Phys. 14, 1192–1200 (2014)

    Article  Google Scholar 

  34. T. Badapanda, R.K. Harichandan, S.S. Nayak, A. Mishra, S. Anwar, Frequency and temperature dependence behavior of impedance, modulus and conductivity of BaBi4Ti4O15 aurivillius ceramic. Process. Appl. Ceram. 8(3), 145–153 (2014)

    Article  Google Scholar 

  35. K.D. Mandal, L. Singh, S. Sharma, U.S. Rai, M.M. Singh, Dielectric and ac impedance studies of nanostructured CaCu3Ti3.90Ce0.10O12 electro-ceramic synthesized by citrate-gelroute. J. Sol-Gel. Sci. Technol. 66, 50–58 (2013)

    Article  CAS  Google Scholar 

  36. A.K. Jonscher, The universe dielectric response. Nature 267, 673–677 (1977)

    Article  CAS  Google Scholar 

  37. P.M. Suherman, T.J. Jackson, Y.Y. Tse, Microwave properties of Ba0.5Sr0.5TiO3 thin film coplanar phase shifters. J. Appl. Phys. 99, 104101 (2006)

    Article  Google Scholar 

  38. V.O. Sherman, A.K. Tagantsev, N. Setter, D. Iddles, T. Price, Ferroelectrice dielectric tunable composites. J. Appl. Phys. 99, 074104 (2006)

    Article  Google Scholar 

  39. X. Ma, S. Li, Y. He, The abnormal increase of tunability in ferroelectric–dielectric composite ceramics and its origin. J. Alloys Compd. 739, 755–763 (2018)

    Article  CAS  Google Scholar 

  40. A. Outzourhit, J.U. Trefny, T. Kito, Tunability of the dielectric constant of Ba0.1Sr0.9TiO3 ceramics in the paraelectric state. J. Mater. Res. 10(6), 1411–1417 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Foundation of Collaboration Innovation Center of Electronic Materials and Devices (No. ICEM2015-4002) and the National Natural Science Foundation of China (Grant No. 51602037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Chen or Jihua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Chen, H., Wei, M. et al. Effects of Bi2O3, Sm2O3 content on the structure, dielectric properties and dielectric tunability of BaTiO3 ceramics. J Mater Sci: Mater Electron 30, 19279–19288 (2019). https://doi.org/10.1007/s10854-019-02288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02288-8

Navigation