Skip to main content
Log in

Impurity induced dielectric relaxor behavior in Zn doped LaFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sol–gel derived nanocrystalline samples of LaFe1−xZnxO3 have been investigated for their dielectric properties in the broad frequency and temperature range. The pristine sample exhibits an anomaly around Néel temperature in the variation of dielectric permittivity against temperature. However, the loss factor shows frequency dependent peak indicating the relaxational behavior in the LaFeO3 system. The incorporation of Zn enhances the relaxational behavior in the pristine system. A.C. conductivity is determined for all the samples in the temperature range 300–600 K. Activation energy determined in the high-temperature range (500–600 K) may correspond to the motion of singly ionized oxygen vacancies, in the vicinity of 450–500 K corresponds to the motion of doubly ionized oxygen vacancies within the single FeO6 octahedra and in the lower temperature range (300–450 K) it may correspond to hopping of electrons between Fe2+ and Fe3+ ions. The hopping conduction mechanism has been investigated from the temperature dependence of the “s” parameter. The conduction mechanism in pristine sample is governed by the correlated barrier hopping (CBH) model. However, in doped samples, the conduction mechanism follows both CBH and non-overlapping small polaron tunneling (NSPT) models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Ping, L. Liu, K.P. Ong, P. Wu, J. Li, J. Pu, J. Power Sources 176, 82 (2008)

    Google Scholar 

  2. S. Nakayama, J. Mater. Sci. 6, 5643 (2001)

    Google Scholar 

  3. Q. Ming, M.D. Nersesyan, A. Wagner, J. Ritchie, J.T. Richardson, D. Luss, A.J. Jacobson, Y.L. Yang, Solid State Ion 122, 113 (1999)

    CAS  Google Scholar 

  4. X. Chen, Z. Jia, A. Feng, B. Wang, X. Tong, C. Zhang, G. Wu, J. Colloid Interface Sci. 553, 465 (2019)

    CAS  Google Scholar 

  5. Z. Gao, Z. Jia, J. Zhang, A. Feng, Z. Huang, G. Wu, J. Mater. Sci. 30, 13474 (2019)

    CAS  Google Scholar 

  6. X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu, M. Zhang, H. Cao, G. Wu, Carbon 152, 827 (2019)

    CAS  Google Scholar 

  7. Z. Jia, Z. Gao, A. Feng, Y. Zhang, C. Zhang, G. Nie, Compos. B 176, 1 (2019)

    Google Scholar 

  8. G. Hearne, M. Pasternak, R. Taylor, P. Lacorre, Phys. Rev. B 51, 11495 (1995)

    CAS  Google Scholar 

  9. T.M. Rearick, G.L. Catchen, J.M. Adams, Phys. Rev. B 48, 224 (1993)

    CAS  Google Scholar 

  10. S. Manzoor, S. Husain, V.R. Reddy, Appl. Phys. Lett. 3, 1 (2018)

    Google Scholar 

  11. M. Popa, J.M.C. Moreno, J. Alloys Compd. 509, 4108 (2011)

    CAS  Google Scholar 

  12. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express 3, 1 (2016)

    Google Scholar 

  13. J.L. Ye, C.C. Wang, W. Ni, X.H. Sun, J. Alloys Compd. 617, 850 (2014)

    CAS  Google Scholar 

  14. Y. Ma, X.M. Chen, Y.Q. Lin, J. Appl. Phys. 103, 1 (2008)

    Google Scholar 

  15. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    CAS  Google Scholar 

  16. Samiya Manzoor, Shahid Husain, Mater. Res. Express 5, 55009 (2018)

    Google Scholar 

  17. R.L. White, J. Appl. Phys. 40, 1061 (1969)

    CAS  Google Scholar 

  18. S. Manzoor, S. Husain, J. Appl. Phys. 3, 065110 (2018)

    Google Scholar 

  19. A. Jaiswal, R. Das, T. Maity, P. Poddar, J. Appl. Phys. 110, 1 (2011)

    Google Scholar 

  20. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mater. Res. Bull. 48, 4506 (2013)

    CAS  Google Scholar 

  21. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18, 11 (2009)

    Google Scholar 

  22. A.K. Jonscher, J. Phys. D 32, R57 (1999)

    CAS  Google Scholar 

  23. G. Anjum, R. Kumar, S. Mollah, D.K. Shukla, S. Kumar, C.G. Lee, J. Appl. Phys. 107, 1 (2010)

    Google Scholar 

  24. A. Somvanshi, S. Husain, W. Khan, J. Alloys Compd. 778, 439 (2019)

    CAS  Google Scholar 

  25. S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, J. Alloys Compd. 663, 289294 (2016)

    Google Scholar 

  26. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  27. A.K. Jonscher, Nature 267, 673 (1977)

    CAS  Google Scholar 

  28. Z.J. Huang, Y. Cao, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Phys. Rev. B 56, 2623 (1997)

    CAS  Google Scholar 

  29. Z.H. Chen, G.Z. Yang, J. Phys. D 39, 2481 (2006)

    Google Scholar 

  30. W. Bai, C. Chen, J. Yang, Y. Zhang, R. Qi, R. Huang, X. Tang, C.G. Duan, J. Chu, Sci. Rep. 5, 17846 (2015)

    Google Scholar 

  31. C. Ang, Z. Yu, Z. Jing, Phys. Rev. B 61, 957 (2000)

    CAS  Google Scholar 

  32. M.G. Masud, A. Ghosh, J. Sannigrahi, B.K. Chaudhuri, J. Phys. Condens. Matter. 24, 295902 (2012)

    Google Scholar 

  33. I. Fier, L. Walmsley, J.A. Souza, I. Fier, L. Walmsley, J.A. Souza, J. Appl. Phys. 110, 1 (2011)

    Google Scholar 

  34. A. Peláiz-Barranco, F. Calderón-Piñar, O. García-Zaldívar, Y. González-Abreu, Adv. Ferroelectr. (2012). https://doi.org/10.5772/52149

    Article  Google Scholar 

  35. M.Y. Yang, K. Kamiya, B. Magyari-Kope, M. Niwa, Y. Nishi, K. Shiraishi, Appl. Phys. Lett. 103, 093504 (2013)

    Google Scholar 

  36. V. Babic, C. Geers, I. Panas, RSC Adv. 8, 41255 (2018)

    CAS  Google Scholar 

  37. U. Aschauer, P. Bowen, S.C. Parker, Acta Mater. 57, 4765 (2009)

    CAS  Google Scholar 

  38. L. Liu, C. Wang, X. Sun, G. Wang, C. Lei, T. Li, J. Alloys Compd. 552, 279 (2013)

    CAS  Google Scholar 

  39. J.F. Scott, M. Dawber, Appl. Phys. Lett. 76, 3801 (2000)

    CAS  Google Scholar 

  40. L. John Berchmans, R. Sindhu, S. Angappan, C.O. Augustin, J. Mater. Process. Technol. 207, 301 (2008)

    CAS  Google Scholar 

  41. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    CAS  Google Scholar 

  42. Y. Ben Taher, A.O.N.K. Maaloul, K.K.M. Gargouri, Appl. Phys. A 41, 223001 (2015)

    Google Scholar 

  43. S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42, 943 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Husain, S., Somvanshi, A. et al. Impurity induced dielectric relaxor behavior in Zn doped LaFeO3. J Mater Sci: Mater Electron 30, 19227–19238 (2019). https://doi.org/10.1007/s10854-019-02281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02281-1

Navigation