Skip to main content
Log in

Wideband microwave absorption in thin nanocomposite films induced by a concentration gradient of mixed carbonaceous nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Absorption in excess of 90% is induced over a 22 GHz bandwidth by the combination of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) dispersed in a polymer matrix. This performance is achieved by a stack of polymer films showing a concentration gradient of mixed CNTs and GNPs from layer to layer, having a total thickness of only \(0.76\,\lambda /4.\) Excellent agreement is observed from 18 to 40 GHz between the predicted and measured reflectivity and the resulting high absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Khoshroo et al., J. Electroanal. Chem. 823, 61–66 (2018)

    Article  CAS  Google Scholar 

  2. J. Amania et al., Anal. Biochem. 548, 53–59 (2018)

    Article  Google Scholar 

  3. H.R. Naderi et al., Appl. Surf. Sci. 423, 1025–1034 (2017)

    Article  CAS  Google Scholar 

  4. I.V. Zaporotskova et al., Mod. Electron. Mater. 2, 95–105 (2016)

    Article  Google Scholar 

  5. V.D.N. Bezzon et al., Adv. Mater. Sci. Eng. 4, 1–21 (2019)

    Article  Google Scholar 

  6. S. Revathia et al., Int. J. Electron. Electr. Comput. Syst. 7, 9–16 (2018)

    Google Scholar 

  7. J. Pena-Bahamonde et al., J. Nanobiotechnol. 16, 1–17 (2018)

    Article  Google Scholar 

  8. G. Ijeomah et al., Int. J. Nano Biomater. 6, 83–109 (2016)

    Article  CAS  Google Scholar 

  9. L. Fekri Aval et al., Heliyon 4, 1–17 (2018)

    Google Scholar 

  10. A. Bakandritsos et al., FlatChem 13, 25–33 (2019)

    Article  CAS  Google Scholar 

  11. J.-B. Kim et al., Compos. Sci. Technol. 68, 2909 (2008)

    Article  CAS  Google Scholar 

  12. J.-B. Kim, Adv. Compos. Mater. 21, 333 (2012)

    Article  CAS  Google Scholar 

  13. D. Micheli et al., IEEE Trans. Microw. Theory Tech. 59, 2633 (2011)

    Article  CAS  Google Scholar 

  14. D. Micheli et al., in IEEE-NANO 2009. 9th IEEE Conference on Nanotechnology, 2009

  15. D. Micheli et al., Acta Astronaut. 88, 61 (2013)

    Article  CAS  Google Scholar 

  16. G. De Bellis et al., Carbon 49, 4291 (2011)

    Article  Google Scholar 

  17. A.G. D’Aloia et al., Carbon 73, 175 (2014)

    Article  Google Scholar 

  18. I. Huynen et al., in 38th European Microwave Conference (EuMC), ISBN 978-2-87487-006-4 (2008)

  19. Y. Danlee et al., Compos. Sci. Technol. 100, 182 (2014)

    Article  CAS  Google Scholar 

  20. P. Potschke et al., Eur. Polym. J. 40, 137 (2004)

    Article  CAS  Google Scholar 

  21. N. Quiévy et al., IEEE Trans. Electromagn. Compat. 54, 43–51 (2012)

    Article  Google Scholar 

  22. V. Resta et al., Vacuum 116, 82–89 (2015)

    Article  CAS  Google Scholar 

  23. G. Sobon et al., Opt. Express 20, 19463–19473 (2012)

    Article  CAS  Google Scholar 

  24. U. Szeluga et al., Composites A 73, 204 (2015)

    Article  CAS  Google Scholar 

  25. J. Sumfleth et al., J. Mater. Sci. 44, 3241 (2009)

    Article  CAS  Google Scholar 

  26. S.M. Zhang et al., eXPRESS Polym. Lett. 6, 159 (2012)

    Article  CAS  Google Scholar 

  27. Y. Li et al., Compos. Sci. Technol. 138, 209 (2017)

    Article  CAS  Google Scholar 

  28. D. Pozar, in Microwave Engineering, 2nd edn. (Wiley, New York, 1998)

    Google Scholar 

  29. K.-Y. Park et al., Compos. Sci. Technol. 66, 576–584 (2006)

    Article  CAS  Google Scholar 

  30. D. Micheli et al., Compos. Sci. Technol. 70, 400–409 (2010)

    Article  CAS  Google Scholar 

  31. D. Micheli et al., Acta Astronaut. 69, 747–757 (2011)

    Article  CAS  Google Scholar 

  32. D. Micheli et al., Carbon 77, 756–774 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Fund for Scientific Research (F.R.S.-FNRS, Belgium) for supporting this research. This work is also supported by the Walloon region, and by the “Communauté Française de Belgique”, through the Project “Nano4waves” funded by its Research Program “Actions de Recherche Concertées”. Special thanks are also due to Mr. H. Mesfin for the fabrication of the composite layers and to Professor A. Delcorte for fruitful discussions in the frame of the Nano4waves Project. The help of S. Bebelmans, D. Magnin, J. Mahy, W. Malik and P. Simon for the various characterizations was also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Huynen.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswar, R., Bailly, C., Hermans, S. et al. Wideband microwave absorption in thin nanocomposite films induced by a concentration gradient of mixed carbonaceous nanostructures. J Mater Sci: Mater Electron 30, 19147–19153 (2019). https://doi.org/10.1007/s10854-019-02271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02271-3

Navigation