Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications

Abstract

We have investigated the structural, electronical, optical and thermoelectric properties of Cobalt phthalocyanine polymer, CoPc, by using the full potential linearized augmented plane wave (FP-LAPW) method. The energy band structure of CoPc shows that this compound has an indirect band gap with two deep trap bands which have strong influence on the optical and thermoelectric properties. Achieved optical spectra are in close agreement with the experiment. Seebeck coefficient and dimensionless figure of merit are 1711.6 (μV/K) and 3.23, respectively. The results show that CoPc polymer can be used in the optical and thermoelectric devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Z.T. Liu, H.S. Kwok, A.B. Djurisic, The optical functions of metal phthalocyanines. J. Phys. D 37, 678–688 (2004)

    CAS  Article  Google Scholar 

  2. 2.

    G. McHale, M.I. Newton, P.D. Hooper, M.R. Willis, Nickel phthalocyanine photovoltaic devices. Opt. Mater. 6, 89–92 (1996)

    CAS  Article  Google Scholar 

  3. 3.

    D. Hohnholz, S. Steinbrecher, M. Hanack, Applications of phthalocyanines in organic light emitting devices. J. Mol. Struct. 521, 231–237 (2000)

    CAS  Article  Google Scholar 

  4. 4.

    M. Trometer, R. Even, J. Simon, A. Dubon, J.Y. Laval, J.P. Germain, C. Maleysson, A. Pauly, H. Robert, Lutetium bisphthalocyanine thin films for gas detection. Sensors Actuators B 8, 129–135 (1992)

    CAS  Article  Google Scholar 

  5. 5.

    A.A. Kuznetsov, V.I. Filippov, R.N. Alyautdin, N.L. Torshina, O.A. Kuznetsov, Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. J. Magn. Magn. Mater. 225, 95–100 (2001)

    CAS  Article  Google Scholar 

  6. 6.

    K. Gao, L. Li, T. Lai, L. Xiao, Y. Huang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, R.A.J. Janssen, X. Peng, Deep absorbing porphyrin small molecule for high performance organic solar cells with very low energy losses. J. Am. Chem. Soc. 137, 7282–7285 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    K. Gao, Z. Zhu, B. Xu, S.B. Jo, Y. Kan, X. Peng, A.K.-Y. Jen, Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29, 1703980–1703988 (2017)

    Article  Google Scholar 

  8. 8.

    K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, H. Wu, X. Peng, Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics. Adv. Mater. 28, 4727–4733 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    K. Gao, S.B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, A.K.-Y. Jen, Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31, 1807842 (2019)

    Article  Google Scholar 

  10. 10.

    M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.L. Yip, X. Peng, Y. Cao, Y. Chen, Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nat. Photonics 11, 85–90 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    K.R. Rajesh, C.S. Menon, Electrical and optical properties of vacuum deposited ZnPc and CoPc thin films and application of variable range hopping model. Indian J Pure Appl Phys 43, 964–971 (2005)

    CAS  Google Scholar 

  13. 13.

    H.S. Soliman, A.M.A. El-Barry, N.M. Khosifan, M.M. El Nahass, Structural and electrical properties of thermally evaporated cobalt phthalocyanine (CoPc) thin films. Eur. Phys. J. Appl. Phys. 37, 1–9 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    P. Singh, N.M. Ravindra, Optical properties of metal phthalocyanines. J. Mater. Sci. 45, 4013–4020 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    B. Joseph, C.S. Menon, Studies on the optical properties and surface morphology of cobalt phthalocyanine thin films. E-J. Chem. 5, 86–92 (2008)

    Article  Google Scholar 

  16. 16.

    T.G. Αbdel-Malik, Μ.Ε. Kassem, N.S. Aly, S.M. Khalil, AC conductivity of cobalt phthalocyanine. Acta Phys. Pol. A 81, 675–680 (1992)

    Article  Google Scholar 

  17. 17.

    R. Mason, G.A. Williams, P.E. Fielding, Structural chemistry of phthalocyaninato-cobalt(II) and -manganese(II). J. Chem. Soc. Dalton Trans. 4, 676–683 (1979)

    Article  Google Scholar 

  18. 18.

    H.A. Rahnamaye Aliabad, B.G. Yalcin, Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect. J. Mater. Sci.: Mater. Electron. 28, 14954–14964 (2017)

    CAS  Google Scholar 

  19. 19.

    H.A. Rahnamaye Aliabad, S. Basirat, I. Ahmad, Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach. J. Mater. Sci.: Mater. Electron. 28, 16476–16483 (2017)

    CAS  Google Scholar 

  20. 20.

    H.A. Rahnamaye Aliabad, M. Chahkandi, Theoretical study of crystalline network and optoelectronic properties of erlotinib hydrochloride molecule: non-covalent interactions consideration. Chem. Papers 73, 737–746 (2019)

    Article  Google Scholar 

  21. 21.

    H.A. Rahnamaye Aliabad, Comparative study of optoelectronic properties of La- substituted In2O3 nano-layers: experimental and theoretical approaches. Optik 175, 268–274 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    H.A. Rahnamaye Aliabad, F. Asadi Rad, Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches. Physica B 545, 275–284 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    H.A. RahnamayeAliabad, S. Rabbanifar, M. Khalid, Structural, optoelectronic and thermoelectric properties of FeSb2 under pressure: bulk and monolayer. Physica B 570, 100–109 (2019)

    Article  Google Scholar 

  24. 24.

    R.P. Linstead, Phthalocyanines. Part I. A new type of synthetic colouring matters. J. Chem. Soc. (1934). https://doi.org/10.1039/JR9340001016

    Article  Google Scholar 

  25. 25.

    G.T. Byrne, R.P. Linstead, A.R. Lowe, Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide. J. Chem. Soc. (1934). https://doi.org/10.1039/JR9340001017

    Article  Google Scholar 

  26. 26.

    R.P. Linstead, A.R. Lowe, Phthalocyanines. Part III. Preliminary experiments on the preparation of phthalocyanines from phthalonitrile. J. Chem. Soc. (1934). https://doi.org/10.1039/JR9340001022

    Article  Google Scholar 

  27. 27.

    C.E. Dent, R.P. Linstead, Phthalocyanines. Part IV. Copper phthalocyanines. J. Chem. Soc. (1934). https://doi.org/10.1039/JR9340001027

    Article  Google Scholar 

  28. 28.

    R.P. Linstead, A.R. Lowe, Phthalocyanines. Part V. The molecular weight of magnesium phthalocyanine. J. Chem. Soc. 1031, 1033 (1934). https://doi.org/10.1039/JR9340001031

    Article  Google Scholar 

  29. 29.

    C.C. Leznoff, A.B.P. Lever, Phthalocyanines: properties and applications (Wiley, NewYork, 1989), pp. 1–40

    Google Scholar 

  30. 30.

    J. Simon, J.J. Andre, J.M. Lehn, ChW Rees, Metallophthalocyanines, molecular semiconductors (Springer, Berlin, 1985), pp. 73–149

    Google Scholar 

  31. 31.

    Y. Alfredsson, B. Brena, K. Nilson, J. Ahlund, L. Kjeldgaard, M. Nyberg, Y. Luo, N. Martensson, A. Sandell, C. Puglia, H. Siegbahn, Electronic structure of a vapor-deposited metal-free phthalocyanine thin film. J. Chem. Phys. 122, 214723 (2005)

    CAS  Article  Google Scholar 

  32. 32.

    K. Nilson, J. Ahlund, M.-N. Shariati, E. Gothelid, P. Palmgren, J. Schiessling, S. Berner, N. Martensson, C. Puglia, Rubidium doped metal-free phthalocyanine monolayer structures on Au (111). J. Phys. Chem. C 114, 12166–12172 (2010)

    CAS  Article  Google Scholar 

  33. 33.

    K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2 k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)

    Article  Google Scholar 

  34. 34.

    K. Georg, H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  Google Scholar 

  35. 35.

    P. Blaha, K. Schwarz, P. Sorantin, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)

    CAS  Article  Google Scholar 

  36. 36.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  Article  Google Scholar 

  37. 37.

    M. Bashi, H.A. RahnamayeAliabad, A.A. Mowlavi, I. Ahmad, 125Te NMR shielding and optoelectronic spectra in XTe3O8 (X = Ti, Zr, Sn and Hf) compounds: Ab initio calculations. J. Mol. Struct. 1148, 223–230 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    H. Shi, M. Chu, P. Zhang, Optical properties of UO2 and Pu. J. Nucl. Mater. 400, 151–156 (2010)

    CAS  Article  Google Scholar 

  39. 39.

    H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, M.A. Saeed, Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput. Mater. Sci. 65, 509–519 (2012)

    CAS  Article  Google Scholar 

  40. 40.

    M. Martin, J. Andve, J. Simon, Influence of dioxygen on the junction properties of metallophthalocyanine based devices. J. Appl. Phys. 54, 2792 (1983)

    CAS  Article  Google Scholar 

  41. 41.

    A. Ahamed, R.A. Collins, The effect of oxygen on the electrical characteristics of triclinic lead phthalocyanine. Thin Solid Films 217, 75 (1992)

    Article  Google Scholar 

  42. 42.

    A. Lewis, Evidence for the Mott model of hopping conduction in the anneal stable state of amorphous silicon. Phys. Rev. Lett. 29, 1555 (1972)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. P. Blaha and Prof. Dr. G. K. H. Madsen from Vienna University of Technology, Austria for help in the use of Wien2 k and BoltzTrap packages.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. A. Rahnamaye Aliabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aliabad, H.A.R., Bashi, M. Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. J Mater Sci: Mater Electron 30, 18720–18728 (2019). https://doi.org/10.1007/s10854-019-02225-9

Download citation