Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications

  • H. A. Rahnamaye AliabadEmail author
  • M. Bashi


We have investigated the structural, electronical, optical and thermoelectric properties of Cobalt phthalocyanine polymer, CoPc, by using the full potential linearized augmented plane wave (FP-LAPW) method. The energy band structure of CoPc shows that this compound has an indirect band gap with two deep trap bands which have strong influence on the optical and thermoelectric properties. Achieved optical spectra are in close agreement with the experiment. Seebeck coefficient and dimensionless figure of merit are 1711.6 (μV/K) and 3.23, respectively. The results show that CoPc polymer can be used in the optical and thermoelectric devices.



We thank Prof. Dr. P. Blaha and Prof. Dr. G. K. H. Madsen from Vienna University of Technology, Austria for help in the use of Wien2 k and BoltzTrap packages.


  1. 1.
    Z.T. Liu, H.S. Kwok, A.B. Djurisic, The optical functions of metal phthalocyanines. J. Phys. D 37, 678–688 (2004)CrossRefGoogle Scholar
  2. 2.
    G. McHale, M.I. Newton, P.D. Hooper, M.R. Willis, Nickel phthalocyanine photovoltaic devices. Opt. Mater. 6, 89–92 (1996)CrossRefGoogle Scholar
  3. 3.
    D. Hohnholz, S. Steinbrecher, M. Hanack, Applications of phthalocyanines in organic light emitting devices. J. Mol. Struct. 521, 231–237 (2000)CrossRefGoogle Scholar
  4. 4.
    M. Trometer, R. Even, J. Simon, A. Dubon, J.Y. Laval, J.P. Germain, C. Maleysson, A. Pauly, H. Robert, Lutetium bisphthalocyanine thin films for gas detection. Sensors Actuators B 8, 129–135 (1992)CrossRefGoogle Scholar
  5. 5.
    A.A. Kuznetsov, V.I. Filippov, R.N. Alyautdin, N.L. Torshina, O.A. Kuznetsov, Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. J. Magn. Magn. Mater. 225, 95–100 (2001)CrossRefGoogle Scholar
  6. 6.
    K. Gao, L. Li, T. Lai, L. Xiao, Y. Huang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, R.A.J. Janssen, X. Peng, Deep absorbing porphyrin small molecule for high performance organic solar cells with very low energy losses. J. Am. Chem. Soc. 137, 7282–7285 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Gao, Z. Zhu, B. Xu, S.B. Jo, Y. Kan, X. Peng, A.K.-Y. Jen, Highly efficient porphyrin-based OPV/perovskite hybrid solar cells with extended photoresponse and high fill factor. Adv. Mater. 29, 1703980–1703988 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, H. Wu, X. Peng, Multi-length-scale morphologies driven by mixed additives in porphyrin-based organic photovoltaics. Adv. Mater. 28, 4727–4733 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Gao, S.B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, A.K.-Y. Jen, Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31, 1807842 (2019)CrossRefGoogle Scholar
  10. 10.
    M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.L. Yip, X. Peng, Y. Cao, Y. Chen, Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nat. Photonics 11, 85–90 (2017)CrossRefGoogle Scholar
  11. 11.
    C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012)CrossRefGoogle Scholar
  12. 12.
    K.R. Rajesh, C.S. Menon, Electrical and optical properties of vacuum deposited ZnPc and CoPc thin films and application of variable range hopping model. Indian J Pure Appl Phys 43, 964–971 (2005)Google Scholar
  13. 13.
    H.S. Soliman, A.M.A. El-Barry, N.M. Khosifan, M.M. El Nahass, Structural and electrical properties of thermally evaporated cobalt phthalocyanine (CoPc) thin films. Eur. Phys. J. Appl. Phys. 37, 1–9 (2007)CrossRefGoogle Scholar
  14. 14.
    P. Singh, N.M. Ravindra, Optical properties of metal phthalocyanines. J. Mater. Sci. 45, 4013–4020 (2010)CrossRefGoogle Scholar
  15. 15.
    B. Joseph, C.S. Menon, Studies on the optical properties and surface morphology of cobalt phthalocyanine thin films. E-J. Chem. 5, 86–92 (2008)CrossRefGoogle Scholar
  16. 16.
    T.G. Αbdel-Malik, Μ.Ε. Kassem, N.S. Aly, S.M. Khalil, AC conductivity of cobalt phthalocyanine. Acta Phys. Pol. A 81, 675–680 (1992)CrossRefGoogle Scholar
  17. 17.
    R. Mason, G.A. Williams, P.E. Fielding, Structural chemistry of phthalocyaninato-cobalt(II) and -manganese(II). J. Chem. Soc. Dalton Trans. 4, 676–683 (1979)CrossRefGoogle Scholar
  18. 18.
    H.A. Rahnamaye Aliabad, B.G. Yalcin, Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect. J. Mater. Sci.: Mater. Electron. 28, 14954–14964 (2017)Google Scholar
  19. 19.
    H.A. Rahnamaye Aliabad, S. Basirat, I. Ahmad, Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach. J. Mater. Sci.: Mater. Electron. 28, 16476–16483 (2017)Google Scholar
  20. 20.
    H.A. Rahnamaye Aliabad, M. Chahkandi, Theoretical study of crystalline network and optoelectronic properties of erlotinib hydrochloride molecule: non-covalent interactions consideration. Chem. Papers 73, 737–746 (2019)CrossRefGoogle Scholar
  21. 21.
    H.A. Rahnamaye Aliabad, Comparative study of optoelectronic properties of La- substituted In2O3 nano-layers: experimental and theoretical approaches. Optik 175, 268–274 (2018)CrossRefGoogle Scholar
  22. 22.
    H.A. Rahnamaye Aliabad, F. Asadi Rad, Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches. Physica B 545, 275–284 (2018)CrossRefGoogle Scholar
  23. 23.
    H.A. RahnamayeAliabad, S. Rabbanifar, M. Khalid, Structural, optoelectronic and thermoelectric properties of FeSb2 under pressure: bulk and monolayer. Physica B 570, 100–109 (2019)CrossRefGoogle Scholar
  24. 24.
    R.P. Linstead, Phthalocyanines. Part I. A new type of synthetic colouring matters. J. Chem. Soc. (1934). CrossRefGoogle Scholar
  25. 25.
    G.T. Byrne, R.P. Linstead, A.R. Lowe, Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide. J. Chem. Soc. (1934). CrossRefGoogle Scholar
  26. 26.
    R.P. Linstead, A.R. Lowe, Phthalocyanines. Part III. Preliminary experiments on the preparation of phthalocyanines from phthalonitrile. J. Chem. Soc. (1934). CrossRefGoogle Scholar
  27. 27.
    C.E. Dent, R.P. Linstead, Phthalocyanines. Part IV. Copper phthalocyanines. J. Chem. Soc. (1934). CrossRefGoogle Scholar
  28. 28.
    R.P. Linstead, A.R. Lowe, Phthalocyanines. Part V. The molecular weight of magnesium phthalocyanine. J. Chem. Soc. 1031, 1033 (1934). CrossRefGoogle Scholar
  29. 29.
    C.C. Leznoff, A.B.P. Lever, Phthalocyanines: properties and applications (Wiley, NewYork, 1989), pp. 1–40Google Scholar
  30. 30.
    J. Simon, J.J. Andre, J.M. Lehn, ChW Rees, Metallophthalocyanines, molecular semiconductors (Springer, Berlin, 1985), pp. 73–149CrossRefGoogle Scholar
  31. 31.
    Y. Alfredsson, B. Brena, K. Nilson, J. Ahlund, L. Kjeldgaard, M. Nyberg, Y. Luo, N. Martensson, A. Sandell, C. Puglia, H. Siegbahn, Electronic structure of a vapor-deposited metal-free phthalocyanine thin film. J. Chem. Phys. 122, 214723 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Nilson, J. Ahlund, M.-N. Shariati, E. Gothelid, P. Palmgren, J. Schiessling, S. Berner, N. Martensson, C. Puglia, Rubidium doped metal-free phthalocyanine monolayer structures on Au (111). J. Phys. Chem. C 114, 12166–12172 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2 k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)CrossRefGoogle Scholar
  34. 34.
    K. Georg, H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)CrossRefGoogle Scholar
  35. 35.
    P. Blaha, K. Schwarz, P. Sorantin, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)CrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  37. 37.
    M. Bashi, H.A. RahnamayeAliabad, A.A. Mowlavi, I. Ahmad, 125Te NMR shielding and optoelectronic spectra in XTe3O8 (X = Ti, Zr, Sn and Hf) compounds: Ab initio calculations. J. Mol. Struct. 1148, 223–230 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Shi, M. Chu, P. Zhang, Optical properties of UO2 and Pu. J. Nucl. Mater. 400, 151–156 (2010)CrossRefGoogle Scholar
  39. 39.
    H.A. Rahnamaye Aliabad, M. Ghazanfari, I. Ahmad, M.A. Saeed, Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput. Mater. Sci. 65, 509–519 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Martin, J. Andve, J. Simon, Influence of dioxygen on the junction properties of metallophthalocyanine based devices. J. Appl. Phys. 54, 2792 (1983)CrossRefGoogle Scholar
  41. 41.
    A. Ahamed, R.A. Collins, The effect of oxygen on the electrical characteristics of triclinic lead phthalocyanine. Thin Solid Films 217, 75 (1992)CrossRefGoogle Scholar
  42. 42.
    A. Lewis, Evidence for the Mott model of hopping conduction in the anneal stable state of amorphous silicon. Phys. Rev. Lett. 29, 1555 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran

Personalised recommendations