Skip to main content
Log in

Solution processed boron doped indium oxide thin-film as channel layer in thin-film transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, boron–indium-oxide (BIO) thin-film transistors (TFT) have been fabricated by a solution based processing method. We have studied the structural, morphological, optical and electrical properties of solution processed BIO thin-film for TFT applications. The dopant boron was chosen as an effective carrier suppressor in indium oxide thin-film, owing to high Lewis acid strength, electro-negativity, small ionic size and high boron-oxygen bonding strength. The boron concentration in the indium oxide precursor solution was varied from 0 to 50 at.%. X-ray diffraction analysis confirms the transition of polycrystalline indium oxide thin film to amorphous nature from boron concentration of 20 at.% and above. The thin-films had a uniform smooth surface with an average surface roughness between 0.10 and 0.17 nm. Moreover, the thin-films were shown to be highly transparent (> 86%) in the visible region. The synthesized BIO thin-film was patterned and used as the active channel layer for TFT devices that were fabricated. The BIO (25 at.% boron) TFT post-annealed at 350 °C exhibited amorphous nature with a field effect mobility of 0.8 cm2/V s with threshold voltage at 6.8 V and ION/IOFF of about 4.5 × 108.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004). https://doi.org/10.1038/nature03090

    Article  CAS  Google Scholar 

  2. T. Kamiya, K. Nomura, H. Hosono, J. Disp. Technol. 5, 273 (2009). https://doi.org/10.1109/JDT.2009.2021582

    Article  CAS  Google Scholar 

  3. H.A. Kim, J.O. Kim, J.S. Hur, K.S. Son, J.H. Lim, J. Cho, J.K. Jeong, IEEE Electron Device Lett. 65(11), 4854–4860 (2018). https://doi.org/10.1109/TED.2018.2868697

    Article  CAS  Google Scholar 

  4. M.H. Cho, H. Seol, H. Yang, P.S. Yun, J.U. Bae, K.S. Park, J.K. Jeoong, IEEE Electron Device Lett. 39(5), 688–691 (2018). https://doi.org/10.1109/LED.2018.2812870

    Article  Google Scholar 

  5. Y.-H. Kim, J.-S. Heo, T.-H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.-R. Yi, Y.-Y. Noh, S.K. Park, Nature 489, 128 (2012). https://doi.org/10.1038/nature11434

    Article  CAS  Google Scholar 

  6. C. Avis, J. Jang, J. Mater. Chem. 21, 10649 (2011). https://doi.org/10.1039/C1JM12227D

    Article  CAS  Google Scholar 

  7. M.G. Kim, H.S. Kim, Y.G. Ha, J. He, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 132, 10352 (2010). https://doi.org/10.1021/ja100615r

    Article  CAS  Google Scholar 

  8. Y.G. Kim, T. Kim, C. Avis, S.-H. Lee, J. Jang, IEEE Trans. Electron Devices 63, 1078 (2016). https://doi.org/10.1109/TED.2016.2518703

    Article  CAS  Google Scholar 

  9. S. Parthiban, J.-Y. Kwon, J. Mater. Res. 29, 1585 (2014). https://doi.org/10.1557/jmr.2014.187

    Article  CAS  Google Scholar 

  10. N. Gong, C. Park, J. Lee, I. Jeong, H. Han, J. Hwang, J. Park, K. Park, H. Jeong, Y. Ha, Y. Hwang, SID Symp. Digest Techn. Pap. 43, 784 (2012)

    Article  Google Scholar 

  11. J.S. Park, T.W. Kim, D. Stryakhilev, J.S. Lee, S.G. An, Y.S. Pyo, D.B. Lee, Y.G. Mo, D.U. Jin, H.K. Chung, Appl. Phys. Lett. 95, 013503 (2009). https://doi.org/10.1063/1.3159832

    Article  CAS  Google Scholar 

  12. J.W. Hennek, J. Smith, A. Yan, M.G. Kim, W. Zhao, V.P. Dravid, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 135, 10729–10741 (2013). https://doi.org/10.1021/ja403586x

    Article  CAS  Google Scholar 

  13. N. Mitoma, S. Aikawa, W. Ou-Yang, X. Gao, T. Kizu, M.F. Lin, A. Fujiwara, T. Nabatame, K. Tsukagoshi, Appl. Phys. Lett. 106, 042106 (2015). https://doi.org/10.1063/1.4907285

    Article  CAS  Google Scholar 

  14. K. Kurishima, T. Nabatame, T. Onaya, K. Tsukagoshi, A. Ohib, N. Ikeda, T. Nagata, A. Ogura, ECS Trans. 86(11), 135–145 (2018). https://doi.org/10.1149/08611.0135ecst

    Article  CAS  Google Scholar 

  15. S.H. Lee, T. Kim, J. Lee, C. Avis, J. Jang, Appl. Phys. Lett. 110, 122102 (2017). https://doi.org/10.1063/1.4978932

    Article  CAS  Google Scholar 

  16. J.I. Kim, K.H. Ji, M. Jang, H. Yang, R. Choi, J.K. Jeong, ACS Appl. Mater. Interfaces 3(7), 2522–2528 (2011). https://doi.org/10.1021/am200388h

    Article  CAS  Google Scholar 

  17. K.A. Stewart, V. Gouliouk, D.A. Keszler, J.F. Wager, Solid-State Electron. 137, 80–84 (2017). https://doi.org/10.1016/j.sse.2017.08.004

    Article  CAS  Google Scholar 

  18. D.Y. Zhong, J. Li, Y.H. Zhou, C.X. Huang, J.H. Zhang, X.F. Li, J. Huang, X.Y. Jiang, Z.L. Zhang, Superlattices Microstruct. 122, 377–386 (2018). https://doi.org/10.1016/j.spmi.2018.07.004

    Article  CAS  Google Scholar 

  19. D.Y. Zhong, J. Li, C.Y. Zhao, C.X. Huang, J.H. Zhang, X.F. Li, X.Y. Jiang, Z.L. Zhang, IEEE Trans. Electron Devices 65(2), 520–525 (2018). https://doi.org/10.1109/TED.2017.2779743

    Article  CAS  Google Scholar 

  20. S. Gandla, S.R. Gollu, R. Sharma, V. Sarangi, D. Gupta, Appl. Phys. Lett. 107, 152102 (2015). https://doi.org/10.1063/1.4933304

    Article  CAS  Google Scholar 

  21. X. Zhang, B. Wang, W. Huang, Y. Chen, G. Wang, L. Zeng, W. Zhu, M.J. Bedzyk, W. Zhang, J.E. Medvedeva, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 140(39), 12501–12510 (2018). https://doi.org/10.1021/jacs.8b06395

    Article  CAS  Google Scholar 

  22. R. Takata, A. Neumann, D. Weber, D.V. Pham, R. Anselmann, Y. Kitamura, T. Kakimura, S. Suzuki, S. Minami, M. Kodama, J. Soc. Inform. Display 24(6), 381–385 (2016). https://doi.org/10.1002/jsid.450

    Article  CAS  Google Scholar 

  23. S. Parthiban, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, R. Ganesan, Sol. Energy Mater. Sol. Cells 93(1), 92–97 (2009). https://doi.org/10.1016/j.solmat.2008.08.007

    Article  CAS  Google Scholar 

  24. V. Gokulakrishnan, S. Parthiban, K. Jeganathan, K. Ramamurthi, Appl. Surf. Sci. 257, 9068–9072 (2011). https://doi.org/10.1016/j.apsusc.2011.05.102

    Article  CAS  Google Scholar 

  25. M. Mativenga, J.K. Um, D.H. Kang, R.K. Mruthyunjaya, J.H. Chang, G.N. Heiler, T.J. Tredwell, J. Jang, IEEE Trans. Electron Devices 59, 9 (2012). https://doi.org/10.1109/TED.2012.2205258

    Article  CAS  Google Scholar 

  26. D. Gupta, M. Katiyar, D. Gupta, Proc. ASID 6, 425–428 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology-Science and Engineering Research Board, Government of India for financial support under the early career research award (File No. ECR/2016/000785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parthiban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulkumar, S., Parthiban, S., Gnanaprakash, D. et al. Solution processed boron doped indium oxide thin-film as channel layer in thin-film transistors. J Mater Sci: Mater Electron 30, 18696–18701 (2019). https://doi.org/10.1007/s10854-019-02222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02222-y

Navigation