Abstract
Electron transport layer (ETL) plays a crucial role on the fabrication of perovskite solar cells (PSCs) by separating and transporting the charge carriers. Titanium dioxide (TiO2) has been extensively used as an ETL in PSCs; however, high temperature thermal annealing requirement impedes its integration with flexible polymer substrates for roll to roll fabrication. Herein, we have demonstrated that SnO2 is a potential ETL candidate when fabricated at low temperature (180 °C) using spin coating technique. XRD and XPS analysis revealed synthesis of rutile SnO2 tetragonal phase. TEM micrographs with SAED pattern proved formation of nanosized (3 to 4 nm) crystals of SnO2 with polycrystalline phase. FESEM analysis revealed the SnO2 nanocrystals fully covered the FTO surface and elemental mapping confirmed the uniformly distribution tin (Sn) and (O) elements throughout the surface. In addition to this, transmission analysis confirmed that SnO2 film exhibited good transmission property. PSCs were fabricated in ambient air (relative humidity ranges from 55% to 65%) with concentrated SnO2 colloidal solution and diluted SnO2 with different concentrations (1:1 v/v, 1:2 v/v, 1:4 v/v and 1:6 v/v). It was found that 1:4 v/v based diluted colloidal solution of SnO2 in DI water film exhibited the highest PSC performance of 8.51% in ambient conditions. Thus, low temperature solution processed SnO2 is an efficient ETL and well-suited for low cost automated fabrication of PSCs at large scale.
This is a preview of subscription content,
to check access.






References
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 3061 (2014)
F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 8094 (2014)
N. Zhou, Q. Cheng, L. Li, H. Zhou, J. Phys. D 51, 394001 (2018)
M. Zhu, W. Liu, W. Ke, S. Clark, E.B. Secor, T.-B. Song, M.G. Kanatzidis, X. Li, M.C. Hersam, J. Mater. Chem. A 5, 24110 (2017)
S. Singh, B. Sharma, G. Banappanavar, A. Dey, S. Chakraborty, K.L. Narasimhan, P. Bhargava, D. Kabra, ACS Appl. Energy Mater. 1, 1870 (2018)
T.M.A. Kojima, K. Teshima, Y. Shirai, J Am Chem Soc 131, 6050 (2009)
NREL, PV Research Cell Record Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20181221.pdf. Accessed Dec 2018
J. Barbé, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A. El Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Del Gobbo, ACS Appl. Mater. Interfaces 9, 11828 (2017)
F. Yang, D.-W. Kang, Y.-S. Kim, RSC Adv. 7, 19030 (2017)
J.Y. Chen, C.C. Chueh, Z. Zhu, W.C. Chen, A.K.Y. Jen, Sol. Energy Mater. Sol. Cells 164, 47 (2017)
Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, ChemSusChem 9, 2686 (2016)
B. Roose, C.M. Johansen, K. Dupraz, T. Jaouen, P. Aebi, U. Steiner, A. Abate, J. Mater. Chem. A 6, 1850 (2018)
P. Zhang, F. Yang, G. Kapil, Q. Shen, T. Toyoda, K. Yoshino, T. Minemoto, S.S. Pandey, T. Ma, S. Hayase, Org. Electron. Phys. Mater. Appl. (2018). https://doi.org/10.1016/j.orgel.2018.06.038
W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137, 6730 (2015)
A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, J. Phys. Chem. C 118, 28494 (2014)
D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014)
J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Lau, J. Mater. Chem. A 3, 11750 (2015)
W.A. Dunlap-Shohl, R. Younts, B. Gautam, K. Gundogdu, D.B. Mitzi, J. Phys. Chem. C 120, 16437 (2016)
A. Sadeghzadeh-Attar, M.R. Bafandeh, CrystEngComm 20, 460 (2018)
M. Zadsar, H.R. Fallah, M.H. Mahmoodzadeh, A. Hassanzadeh, M. Ghasemi Varnamkhasti, Mater. Sci. Semicond. Process. 15, 432 (2012)
L. Cheng, M.W. Shao, D. Chen, D.D. Duo Ma, S.T. Lee, CrystEngComm 12, 1536 (2010)
V.K. Vidhu, D. Philip, Spectrochim. Acta A 134, 372 (2015)
J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R. Srimath Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 8, 2928 (2015)
W. Ke, D. Zhao, A.J. Cimaroli, C.R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan, G. Fang, J. Mater. Chem. A 3, 24163 (2015)
X. Liu, J. He, P. Wang, Y. Liu, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.B. Cheng, J. Zhong, ChemSusChem 12, 2385 (2019)
S. Shi, J. Li, T. Bu, S. Yang, J. Xiao, Y. Peng, W. Li, J. Zhong, Z. Ku, Y.B. Cheng, F. Huang, RSC Adv. 9, 9946 (2019)
G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, J. Mater. Chem. A 2, 705 (2014)
J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano 9, 1955 (2015)
Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, F. Yan, Nat. Commun. 7, 1 (2016)
T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Adv. Energy Mater. 5, 1 (2015)
F. Wang, Z. Ye, H. Sarvari, S.M. Park, A. Abtahi, K. Graham, Y. Zhao, Y. Wang, Z.D. Chen, S. Li, J. Power Sources 412, 359 (2019)
J. Bahadur, A.H. Ghahremani, B. Martin, T. Druffel, M.K. Sunkara, K. Pal, Org. Electron. Phys. Mater. Appl. 67, 159 (2019)
K. Ankireddy, A.H. Ghahremani, B. Martin, G. Gupta, T. Druffel, J. Mater. Chem. A 6, 9378 (2018)
L. Yin, D. Chen, X. Cui, L. Ge, J. Yang, L. Yu, B. Zhang, R. Zhang, G. Shao, Nanoscale 6, 13690 (2014)
W.J. Kim, S.W. Lee, Y. Sohn, Nat. Publ. Gr. 1 (2015)
K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari, G. Muralidharan, D. Sastikumar, RSC Adv. 6, 90559 (2016)
J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, H. Wang, Appl. Surf. Sci. 391, 677 (2017)
J. Huang, K. Jiang, X. Cui, Q. Zhang, M. Gao, M. Su, Nat. Publ. Gr. 1 (2015)
L. Brockway, C. Pendyala, J. Jasinski, M.K. Sunkara, S. Vaddiraju, Cryst. Growth Des. 11, 4559 (2011)
L. Chen, J. Deng, H. Gao, Q. Yang, G. Wang, J. Mater. Sci. Mater. Electron. 27, 4275 (2016)
F. Li, M. Xu, X. Ma, L. Shen, L. Zhu, Y. Weng, G. Yue, F. Tan, C. Chen, Nanoscale Res. Lett. 13, 216 (2018)
G. Wang, D. Liu, J. Xiang, D. Zhou, K. Alameh, B. Ding, Q. Song, RSC Adv. 6, 43299 (2016)
P.Y. Lin, Y.Y. Chen, T.F. Guo, Y.S. Fu, L.C. Lai, C.K. Lee, RSC Adv. 7, 10985 (2017)
L. Qiu, Z. Zhuang, S. Yang, W. Chen, L. Song, M. Ding, G. Xia, P. Du, J. Xiong, Mater. Res. Bull. 106, 439 (2018)
M.P. Montoya, S. Sidhik, D. Esparza, T. López-Luke, I. Zarazua, J.M. Rivas, E. De la Rosa, Sol. Energy 180, 594 (2019)
S. Prathapani, V. More, S. Bohm, P. Bhargava, A. Yella, S. Mallick, Appl. Mater. Today 7, 112 (2017)
Acknowledgements
Authors are greatly thankful to DST-IUSSTF for providing BASE fellowship, and the Ministry of Human Research Development (MHRD, Grant No. 02-41-131-429) for their support. Jitendra Bahadur is also thankful to Conn Center for renewable research, University of Louisville, USA and IIT Roorkee, India for providing research facilities.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bahadur, J., Ghahremani, A.H., Martin, B. et al. A study on the material characteristics of low temperature cured SnO2 films for perovskite solar cells under high humidity. J Mater Sci: Mater Electron 30, 18452–18461 (2019). https://doi.org/10.1007/s10854-019-02199-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-019-02199-8