Skip to main content
Log in

A study on the material characteristics of low temperature cured SnO2 films for perovskite solar cells under high humidity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electron transport layer (ETL) plays a crucial role on the fabrication of perovskite solar cells (PSCs) by separating and transporting the charge carriers. Titanium dioxide (TiO2) has been extensively used as an ETL in PSCs; however, high temperature thermal annealing requirement impedes its integration with flexible polymer substrates for roll to roll fabrication. Herein, we have demonstrated that SnO2 is a potential ETL candidate when fabricated at low temperature (180 °C) using spin coating technique. XRD and XPS analysis revealed synthesis of rutile SnO2 tetragonal phase. TEM micrographs with SAED pattern proved formation of nanosized (3 to 4 nm) crystals of SnO2 with polycrystalline phase. FESEM analysis revealed the SnO2 nanocrystals fully covered the FTO surface and elemental mapping confirmed the uniformly distribution tin (Sn) and (O) elements throughout the surface. In addition to this, transmission analysis confirmed that SnO2 film exhibited good transmission property. PSCs were fabricated in ambient air (relative humidity ranges from 55% to 65%) with concentrated SnO2 colloidal solution and diluted SnO2 with different concentrations (1:1 v/v, 1:2 v/v, 1:4 v/v and 1:6 v/v). It was found that 1:4 v/v based diluted colloidal solution of SnO2 in DI water film exhibited the highest PSC performance of 8.51% in ambient conditions. Thus, low temperature solution processed SnO2 is an efficient ETL and well-suited for low cost automated fabrication of PSCs at large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5
Fig.6
Fig. 7

Similar content being viewed by others

References

  1. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 3061 (2014)

    Article  CAS  Google Scholar 

  2. F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 8094 (2014)

    Article  CAS  Google Scholar 

  3. N. Zhou, Q. Cheng, L. Li, H. Zhou, J. Phys. D 51, 394001 (2018)

    Article  CAS  Google Scholar 

  4. M. Zhu, W. Liu, W. Ke, S. Clark, E.B. Secor, T.-B. Song, M.G. Kanatzidis, X. Li, M.C. Hersam, J. Mater. Chem. A 5, 24110 (2017)

    Article  CAS  Google Scholar 

  5. S. Singh, B. Sharma, G. Banappanavar, A. Dey, S. Chakraborty, K.L. Narasimhan, P. Bhargava, D. Kabra, ACS Appl. Energy Mater. 1, 1870 (2018)

    Article  CAS  Google Scholar 

  6. T.M.A. Kojima, K. Teshima, Y. Shirai, J Am Chem Soc 131, 6050 (2009)

    Article  CAS  Google Scholar 

  7. NREL, PV Research Cell Record Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20181221.pdf. Accessed Dec 2018

  8. J. Barbé, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A. El Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Del Gobbo, ACS Appl. Mater. Interfaces 9, 11828 (2017)

    Article  CAS  Google Scholar 

  9. F. Yang, D.-W. Kang, Y.-S. Kim, RSC Adv. 7, 19030 (2017)

    Article  CAS  Google Scholar 

  10. J.Y. Chen, C.C. Chueh, Z. Zhu, W.C. Chen, A.K.Y. Jen, Sol. Energy Mater. Sol. Cells 164, 47 (2017)

    Article  CAS  Google Scholar 

  11. Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang, J. Huang, ChemSusChem 9, 2686 (2016)

    Article  CAS  Google Scholar 

  12. B. Roose, C.M. Johansen, K. Dupraz, T. Jaouen, P. Aebi, U. Steiner, A. Abate, J. Mater. Chem. A 6, 1850 (2018)

    Article  CAS  Google Scholar 

  13. P. Zhang, F. Yang, G. Kapil, Q. Shen, T. Toyoda, K. Yoshino, T. Minemoto, S.S. Pandey, T. Ma, S. Hayase, Org. Electron. Phys. Mater. Appl. (2018). https://doi.org/10.1016/j.orgel.2018.06.038

    Article  Google Scholar 

  14. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137, 6730 (2015)

    Article  CAS  Google Scholar 

  15. A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, J. Phys. Chem. C 118, 28494 (2014)

    Article  CAS  Google Scholar 

  16. D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014)

    Article  CAS  Google Scholar 

  17. J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Lau, J. Mater. Chem. A 3, 11750 (2015)

    Article  CAS  Google Scholar 

  18. W.A. Dunlap-Shohl, R. Younts, B. Gautam, K. Gundogdu, D.B. Mitzi, J. Phys. Chem. C 120, 16437 (2016)

    Article  CAS  Google Scholar 

  19. A. Sadeghzadeh-Attar, M.R. Bafandeh, CrystEngComm 20, 460 (2018)

    Article  CAS  Google Scholar 

  20. M. Zadsar, H.R. Fallah, M.H. Mahmoodzadeh, A. Hassanzadeh, M. Ghasemi Varnamkhasti, Mater. Sci. Semicond. Process. 15, 432 (2012)

    Article  CAS  Google Scholar 

  21. L. Cheng, M.W. Shao, D. Chen, D.D. Duo Ma, S.T. Lee, CrystEngComm 12, 1536 (2010)

    Article  CAS  Google Scholar 

  22. V.K. Vidhu, D. Philip, Spectrochim. Acta A 134, 372 (2015)

    Article  CAS  Google Scholar 

  23. J.P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R. Srimath Kandada, S.M. Zakeeruddin, A. Petrozza, A. Abate, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 8, 2928 (2015)

    Article  CAS  Google Scholar 

  24. W. Ke, D. Zhao, A.J. Cimaroli, C.R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan, G. Fang, J. Mater. Chem. A 3, 24163 (2015)

    Article  CAS  Google Scholar 

  25. X. Liu, J. He, P. Wang, Y. Liu, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.B. Cheng, J. Zhong, ChemSusChem 12, 2385 (2019)

    CAS  Google Scholar 

  26. S. Shi, J. Li, T. Bu, S. Yang, J. Xiao, Y. Peng, W. Li, J. Zhong, Z. Ku, Y.B. Cheng, F. Huang, RSC Adv. 9, 9946 (2019)

    Article  CAS  Google Scholar 

  27. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, J. Mater. Chem. A 2, 705 (2014)

    Article  CAS  Google Scholar 

  28. J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano 9, 1955 (2015)

    Article  CAS  Google Scholar 

  29. Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, F. Yan, Nat. Commun. 7, 1 (2016)

    Google Scholar 

  30. T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Adv. Energy Mater. 5, 1 (2015)

    Article  CAS  Google Scholar 

  31. F. Wang, Z. Ye, H. Sarvari, S.M. Park, A. Abtahi, K. Graham, Y. Zhao, Y. Wang, Z.D. Chen, S. Li, J. Power Sources 412, 359 (2019)

    Article  CAS  Google Scholar 

  32. J. Bahadur, A.H. Ghahremani, B. Martin, T. Druffel, M.K. Sunkara, K. Pal, Org. Electron. Phys. Mater. Appl. 67, 159 (2019)

    CAS  Google Scholar 

  33. K. Ankireddy, A.H. Ghahremani, B. Martin, G. Gupta, T. Druffel, J. Mater. Chem. A 6, 9378 (2018)

    Article  CAS  Google Scholar 

  34. L. Yin, D. Chen, X. Cui, L. Ge, J. Yang, L. Yu, B. Zhang, R. Zhang, G. Shao, Nanoscale 6, 13690 (2014)

    Article  CAS  Google Scholar 

  35. W.J. Kim, S.W. Lee, Y. Sohn, Nat. Publ. Gr. 1 (2015)

  36. K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari, G. Muralidharan, D. Sastikumar, RSC Adv. 6, 90559 (2016)

    Article  CAS  Google Scholar 

  37. J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, H. Wang, Appl. Surf. Sci. 391, 677 (2017)

    Article  CAS  Google Scholar 

  38. J. Huang, K. Jiang, X. Cui, Q. Zhang, M. Gao, M. Su, Nat. Publ. Gr. 1 (2015)

  39. L. Brockway, C. Pendyala, J. Jasinski, M.K. Sunkara, S. Vaddiraju, Cryst. Growth Des. 11, 4559 (2011)

    Article  CAS  Google Scholar 

  40. L. Chen, J. Deng, H. Gao, Q. Yang, G. Wang, J. Mater. Sci. Mater. Electron. 27, 4275 (2016)

    Article  CAS  Google Scholar 

  41. F. Li, M. Xu, X. Ma, L. Shen, L. Zhu, Y. Weng, G. Yue, F. Tan, C. Chen, Nanoscale Res. Lett. 13, 216 (2018)

    Article  CAS  Google Scholar 

  42. G. Wang, D. Liu, J. Xiang, D. Zhou, K. Alameh, B. Ding, Q. Song, RSC Adv. 6, 43299 (2016)

    Article  CAS  Google Scholar 

  43. P.Y. Lin, Y.Y. Chen, T.F. Guo, Y.S. Fu, L.C. Lai, C.K. Lee, RSC Adv. 7, 10985 (2017)

    Article  CAS  Google Scholar 

  44. L. Qiu, Z. Zhuang, S. Yang, W. Chen, L. Song, M. Ding, G. Xia, P. Du, J. Xiong, Mater. Res. Bull. 106, 439 (2018)

    Article  CAS  Google Scholar 

  45. M.P. Montoya, S. Sidhik, D. Esparza, T. López-Luke, I. Zarazua, J.M. Rivas, E. De la Rosa, Sol. Energy 180, 594 (2019)

    Article  CAS  Google Scholar 

  46. S. Prathapani, V. More, S. Bohm, P. Bhargava, A. Yella, S. Mallick, Appl. Mater. Today 7, 112 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are greatly thankful to DST-IUSSTF for providing BASE fellowship, and the Ministry of Human Research Development (MHRD, Grant No. 02-41-131-429) for their support. Jitendra Bahadur is also thankful to Conn Center for renewable research, University of Louisville, USA and IIT Roorkee, India for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thad Druffel or Kaushik Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadur, J., Ghahremani, A.H., Martin, B. et al. A study on the material characteristics of low temperature cured SnO2 films for perovskite solar cells under high humidity. J Mater Sci: Mater Electron 30, 18452–18461 (2019). https://doi.org/10.1007/s10854-019-02199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02199-8

Navigation