Advertisement

Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering

  • Jian Dong
  • HuiHui He
  • Dongyun Zhang
  • Chengkang ChangEmail author
Article
  • 51 Downloads

Abstract

Boron-modified Li(Ni0.8Co0.1Mn0.1)1−xBxO2 cathode materials(NCM811) were successfully prepared by a nano-milling assisted solid-state approach. X-ray diffraction investigations showed that the materials are solid solutions with a layered structure. SEM observations implied that the doped B ions promoted the growth of the target crystal with well-developed facets since it will form liquid phase at lower temperature. The intensity ratio of I(003)/I(104) raised with the increase in Boron doping concentration, until a maximum value of 1.453 was observed at x = 0.01. Further Rietveld refinements revealed that boron ions occupy the crystal lattice in the transition metal slab which helps to promote the lattice ordering by decreasing the Li/Ni ionic mixing. Such B promoted NCM811 cathode materials were confirmed to have an improved diffusion coefficient with a reduced interfacial resistance by subsequent CV and EIS measurements. From the electrochemical test, those B modified NCM811 cathode materials presented enhanced electrochemical performance. Among the synthesized samples, Li(Ni0.8Co0.1Mn0.1)0.99B0.01O2 exhibited the best specific capacity, with 194.7 mAh g−1 and 166.8 mAh g−1 at 0.1C and 5C respectively. The capacity retention at 0.5C was also confirmed as 98.2% after 100 cycles. Such improvement can be explained by the reduced Li/Ni ionic mixing, the increased Li ionic diffusion and the reduced interfacial resistance caused by the promoted growth of the B doped NCM811 crystals. Compared to those NCM811 materials reported elsewhere, the material obtained by this approach showed high potential for future application.

Notes

Funding

The research was supported by Science and Technology Commission of Shanghai Municipality (14520503100 and 201310-JD-B2-009) and Shanghai Municipal Education Commission (15ZZ095).

References

  1. 1.
    N. Recham, J.N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.M. Tarascon, Nat. Mater. (2009).  https://doi.org/10.1038/nmat2590 CrossRefGoogle Scholar
  2. 2.
    Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, Nat. Mater. (2009).  https://doi.org/10.1038/nmat2418 CrossRefGoogle Scholar
  3. 3.
    Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nat. Mater. (2012).  https://doi.org/10.1038/nmat3435 CrossRefGoogle Scholar
  4. 4.
    G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. (2007).  https://doi.org/10.1002/adma.200700748 CrossRefGoogle Scholar
  5. 5.
    Z.M. Yu, L.C. Zhao, T. Nonferr, Metal. Soc. (2007).  https://doi.org/10.1016/S1003-6326(07)60152-6 CrossRefGoogle Scholar
  6. 6.
    M.H. Kim, H.S. Shin, D. Shin, Y.K. Sun, J. Power Sources (2006).  https://doi.org/10.1016/j.jpowsour.2005.11.083 CrossRefGoogle Scholar
  7. 7.
    S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, K.W. Nam, ACS Appl. Mater. Interfaces. (2014).  https://doi.org/10.1021/am506712c CrossRefGoogle Scholar
  8. 8.
    K. Min, K. Kim, C. Jung, S.W. Seo, Y.Y. Song, H.S. Lee, J. Shin, E. Cho, J. Power Sources (2016).  https://doi.org/10.1016/j.jpowsour.2016.03.017 CrossRefGoogle Scholar
  9. 9.
    S. Gao, X. Zhan, Y.T. Cheng, J. Power Sources (2019).  https://doi.org/10.1016/j.jpowsour.2018.10.094 CrossRefGoogle Scholar
  10. 10.
    Z. Huang, Z. Wang, X. Zheng, H. Guo, X. Li, Q. Jing, Z. Yang, RSC Adv. (2015).  https://doi.org/10.1039/c5ra16633k CrossRefGoogle Scholar
  11. 11.
    L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem. (2008).  https://doi.org/10.1007/s10008-008-0695-z CrossRefGoogle Scholar
  12. 12.
    K. Min, S.W. Seo, Y.Y. Song, H.S. Lee, E. Cho, Phys. Chem. Chem. Phys. (2017).  https://doi.org/10.1039/c6cp06270a CrossRefGoogle Scholar
  13. 13.
    S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun, Electrochim. Acta (2009).  https://doi.org/10.1016/j.electacta.2009.01.048 CrossRefGoogle Scholar
  14. 14.
    M. Eilers-Rethwisch, M. Winter, F.M. Schappacher, J. Power Sources (2018).  https://doi.org/10.1016/j.jpowsour.2018.02.080 CrossRefGoogle Scholar
  15. 15.
    L.J. Li, X.H. Li, Z.X. Wang, H.J. Guo, P. Yue, W. Chen, L. Wu, J. Alloys Compd. (2010).  https://doi.org/10.1016/j.jallcom.2010.07.148 CrossRefGoogle Scholar
  16. 16.
    R. Zhao, Z. Yang, J. Liang, D. Lu, C. Liang, X. Guan, A. Gao, H. Chen, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2016.07.230 CrossRefGoogle Scholar
  17. 17.
    Z. Huang, Z. Wang, Q. Jing, H. Guo, X. Li, Z. Yang, Electrochim. Acta (2016).  https://doi.org/10.1016/j.electacta.2016.01.139 CrossRefGoogle Scholar
  18. 18.
    X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng, Sustain Energy Fuels (2018).  https://doi.org/10.1039/c7se00513j CrossRefGoogle Scholar
  19. 19.
    Q. Chen, C. Du, D. Qu, X. Zhang, Z. Tang, RSC Adv. (2015).  https://doi.org/10.1039/c5ra14376d CrossRefGoogle Scholar
  20. 20.
    F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, D. Aurbach, J. Mater. Chem. A (2016).  https://doi.org/10.1039/c6ta06740a CrossRefGoogle Scholar
  21. 21.
    C. Qin, J. Cao, J. Chen, G. Dai, T. Wu, Y. Chen, Y. Tang, A. Li, Y. Chen, Dalton Trans. (2016).  https://doi.org/10.1039/c6dt01764a CrossRefGoogle Scholar
  22. 22.
    L. Pan, Y. Xia, B. Qiu, H. Zhao, H. Guo, K. Jia, Q. Gu, Z. Liu, J. Power Sources (2016).  https://doi.org/10.1016/j.jpowsour.2016.07.064 CrossRefGoogle Scholar
  23. 23.
    K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, J. Mater. Chem. (2009).  https://doi.org/10.1039/b817242k CrossRefGoogle Scholar
  24. 24.
    G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources (2003).  https://doi.org/10.1016/s0378-7753(03)00241-6 CrossRefGoogle Scholar
  25. 25.
    R. Dominko, M. Bele, J.M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon, J. Jamnik, Chem. Mater. (2007).  https://doi.org/10.1021/cm062843g CrossRefGoogle Scholar
  26. 26.
    Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, Z. Shao, Chem. Commun. (2010).  https://doi.org/10.1039/c0cc01721c CrossRefGoogle Scholar
  27. 27.
    N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J.M. Tarascon, Chem. Mater. (2009).  https://doi.org/10.1021/cm803259x CrossRefGoogle Scholar
  28. 28.
    L. Guan, P. Xiao, T.J. Lv, D.Y. Zhang, C.K. Chang, J. Electrochem. Soc. (2017).  https://doi.org/10.1149/2.1731713jes CrossRefGoogle Scholar
  29. 29.
    T.J. Lv, L. Guan, P. Xiao, D.Y. Zhang, C.K. Chang, J. Mater. Sci. (2019).  https://doi.org/10.1007/s10853-018-03194-w CrossRefGoogle Scholar
  30. 30.
    T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta (1993).  https://doi.org/10.1016/0013-4686(93)80046-3 CrossRefGoogle Scholar
  31. 31.
    X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, S. Ţălu, J. Mater. Sci. (2019).  https://doi.org/10.1007/s10854-019-01840-w CrossRefGoogle Scholar
  32. 32.
  33. 33.
    D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109–119 (2015)Google Scholar
  34. 34.
    Z.L. Zhang, D.H. Chen, C.K. Chang, RSC Adv. (2017).  https://doi.org/10.1039/c7ra10053a CrossRefGoogle Scholar
  35. 35.
    P. Xiao, T.J. Lv, X.P. Chen, C.K. Chang, Sci. Rep. (2017).  https://doi.org/10.1038/s41598-017-01657-9 CrossRefGoogle Scholar
  36. 36.
    Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. (2014).  https://doi.org/10.1021/nl5008568 CrossRefGoogle Scholar
  37. 37.
    M.D. Levi, J. Electrochem. Soc. (1999).  https://doi.org/10.1149/1.1391759 CrossRefGoogle Scholar
  38. 38.
    X. Wu, S.H. Chang, Y.J. Park, K.S. Ryu, J. Power Sources (2004).  https://doi.org/10.1016/j.jpowsour.2004.05.043 CrossRefGoogle Scholar
  39. 39.
    M. Zhang, H. Zhao, M. Tan, J. Liu, Y. Hu, S. Liu, X. Shu, H. Li, Q. Ran, J. Cai, X. Liu, J. Alloys Compd. (2019).  https://doi.org/10.1016/j.jallcom.2018.09.281 CrossRefGoogle Scholar
  40. 40.
    M.X. Dong, X.Q. Li, Z.X. Wang, X.H. Li, H.J. Guo, Z.J. Huang, T. Nonferr, Metal. Soc. (2017).  https://doi.org/10.1016/S1003-6326(17)60132-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jian Dong
    • 1
  • HuiHui He
    • 1
  • Dongyun Zhang
    • 1
  • Chengkang Chang
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.Shanghai Innovation Institute for MaterialsShanghai UniversityShanghaiChina

Personalised recommendations