Skip to main content
Log in

Green synthesis of Pd nanoparticles supported on modified Nonpareil almond shell using almond hull extract: a beneficial nanocatalyst for convenient reduction of organic dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this investigation, palladium nanoparticles were synthesized by green and inexpensive method using Nonpareil almond hull, as a reducing and stabilizing agent without using any toxic solvent or capping agents. In this protocol, two separate methods were used to immobilize Pd NPs on the surface of green-waste Nonpareil almond shell (NAS) and modified Nonpareil almond shell was obtained as an environmentally benign support. The green synthesized nanocatalysts were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET), and transform electron microscopy (TEM). TEM images revealed that the Pd NPs immobilized on modified Nonpareil almond shell are spherical particles with average size of less than 20 nm without any agglomeration. In order to investigate the catalytic activity of green synthesized Nanocatalyst, it was used in the reduction of Methylene Blue (MB), Rhodamine 6G (R6G) and Methyl Orange (MO) at room temperature. The results showed that the modified nanocatalyst had a high catalytic activity in the reduction of these organic dyes. In addition, the nanocatalyst can be easily recycled and reused several times without losing its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.B. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 39(1), 129–138 (2005)

    Article  CAS  Google Scholar 

  2. J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56, 173–182 (2013)

    Article  CAS  Google Scholar 

  3. K. Yu, S.G. Yang, C. Liu, H. Chen, H. Li, C. Sun, S.A. Boyd, Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis. Environ. Sci. Technol. 46(13), 7318–7326 (2012)

    Article  CAS  Google Scholar 

  4. P. Veerakumar, S.M. Chen, R. Madhu, V. Veeramani, C.T. Hung, S.B. Liu, Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg(II) ions. ACS Appl. Mater. Interfaces 7(44), 24810–24821 (2015)

    Article  CAS  Google Scholar 

  5. B. Vellaichamy, P. Periakaruppan, Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv. 6(38), 31653–31660 (2016)

    Article  CAS  Google Scholar 

  6. B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 82(3), 225–231 (2002)

    Article  CAS  Google Scholar 

  7. P. Wilhelm, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@ TiO2 nano-spheres. J. Photochem. Photobiol., A 185(1), 19–25 (2007)

    Article  CAS  Google Scholar 

  8. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes. Water Res. 34(1), 327–333 (2000)

    Article  CAS  Google Scholar 

  9. H.K. Kadam, S.G. Tilve, Advancement in methodologies for reduction of nitroarenes. RSC Adv. 5(101), 83391–83407 (2015)

    Article  CAS  Google Scholar 

  10. Y.G. Wu, M. Wen, Q.S. Wu, H. Fang, Ni/graphene nanostructure and its electron-enhanced catalytic action for hydrogenation reaction of nitrophenol. J. Phys. Chem. C 118(12), 6307–6313 (2014)

    Article  CAS  Google Scholar 

  11. F. Cheng, J.W. Betts, S.M. Kelly, J. Schaller, T. Heinze, Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 15(4), 989–998 (2013)

    Article  CAS  Google Scholar 

  12. F. Ahmadi, M. Rahimi-Nasrabadi, M. Behpour, Synthesis Nd2TiO5 nanoparticles with different morphologies by novel approach and its photocatalyst application. J. Mater. Sci. 28(2), 1531–1536 (2017)

    CAS  Google Scholar 

  13. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Novrouzi, Optimizing the procedure for the synthesis of nanoscale gadolinium (III) tungstate as efficient photocatalyst. J. Mater. Sci. 28(4), 3780–3788 (2017)

    CAS  Google Scholar 

  14. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Mater. Sci. 47(7), 3757–3769 (2018)

    CAS  Google Scholar 

  15. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)

    Article  CAS  Google Scholar 

  16. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Simple morphology-controlled fabrication of CdTiO3 nanoparticles with the aid of different capping agents. J. Mater. Sci. 27(12), 13294–13299 (2016)

    CAS  Google Scholar 

  17. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Norouzi, Fabrication, characterization and photochemical activity of ytterbium carbonate and ytterbium oxide nanoparticles. J. Mater. Sci. 28(13), 9478–9488 (2017)

    CAS  Google Scholar 

  18. M. Zhu, C. Wang, D. Meng, G. Diao, In situ synthesis of silver nanostructures on magnetic Fe3O4@C core–shell nanocomposites and their application in catalytic reduction reactions. J. Mater. Chem. A 1(6), 2118–2125 (2013)

    Article  CAS  Google Scholar 

  19. A. Kumar, D. Saxena, M.K. Gupta, Nanoparticle catalyzed reaction (NPCR): ZnO-NP catalyzed Ugi-reaction in aqueous medium. Green Chem. 15(10), 2699–2703 (2013)

    Article  CAS  Google Scholar 

  20. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, M. Bagherzadeh, Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol. J. Colloid Interface Sci. 6(1), 2300–2309 (2015)

    Google Scholar 

  21. R.K. Petla, S. Vivekanandhan, M. Misra, A.K. Mohanty, N. Satyanarayana, Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J. Biomater. Nanobiotechnol. 3(1), 14–19 (2012)

    Article  CAS  Google Scholar 

  22. M. Bordbar, A. Yeganeh-Faal, B. Khodadadi, Effect of morphology on the photocatalytic behavior of ZnO nanostructures: low temperature sonochemical synthesis of Ni doped ZnO nanoparticles. J. Sol-Gel. Sci. Technol. 6(3), 190–198 (2016)

    CAS  Google Scholar 

  23. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008)

    Article  CAS  Google Scholar 

  24. K. Pan, H. Ming, H. Yu, Y. Liu, Z. Kang, H. Zhang, S.T. Lee, Different copper oxide nanostructures: synthesis, characterization, and application for C-N cross-coupling catalysis. Cryst. Res. Technol. 46(11), 1167–1174 (2011)

    Article  CAS  Google Scholar 

  25. X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao, B. Shi, One-step room-temperature synthesis of Au@Pd core–shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem. 13(4), 950–957 (2011)

    Article  CAS  Google Scholar 

  26. M.I. Husseiny, M.A. ElAziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta Part A 67(3–4), 1003–1006 (2007)

    Article  CAS  Google Scholar 

  27. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Bioreduction of AuCl4− ions by the fungus, verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40(19), 3585–3588 (2001)

    Article  CAS  Google Scholar 

  28. M. Sastry, A. Ahmad, M.I. Khan, R. Kumar, Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85(2), 162–170 (2003)

    CAS  Google Scholar 

  29. S.W. Lee, C. Mao, C.E. Flynn, A.M. Belcher, Ordering of quantum dots using genetically engineered viruses. Science 296(5569), 892–895 (2002)

    Article  CAS  Google Scholar 

  30. A.M. Awwad, N.M. Salem, Q.M. Ibrahim, A.O. Abdeen, Phytochemical fabrication and characterization of silver/silver chloride nanoparticles using Albizia julibrissin flowers extract. Adv. Mater. Lett. 6(8), 726–730 (2015)

    Article  CAS  Google Scholar 

  31. J. Virkutyte, R.S. Varma, Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2(5), 837–846 (2011)

    Article  CAS  Google Scholar 

  32. J. Kou, R.S. Varma, Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves. Chemsuschem 5(18), 8675–8679 (2012)

    Google Scholar 

  33. A. Saxena, R.M. Tripathi, F. Zafar, P. Singh, Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 67(1), 91–94 (2012)

    Article  CAS  Google Scholar 

  34. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloids Interface Sci. 275(2), 496–502 (2004)

    Article  CAS  Google Scholar 

  35. A.M. Awwad, N.M. Salem, Green synthesis of silver nanoparticles by mulberry leaves extract. J. Nanosci. Nanotechnol. 2(4), 125–128 (2012)

    Article  CAS  Google Scholar 

  36. K.P. Kumar, W. Paul, C.P. Sharma, Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46(10), 2007–2013 (2011)

    Article  CAS  Google Scholar 

  37. A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2), 346–356 (2013)

    Article  CAS  Google Scholar 

  38. A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543 (2009)

    Article  CAS  Google Scholar 

  39. R.C. Tang, Y. Zhou, Z.Y. Yang, Green and facile fabrication of AgNPs@silk for colorful and multifunctional textiles using baicalin as a natural reductant. J. Clean. Prod. 170, 940–949 (2018)

    Article  CAS  Google Scholar 

  40. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomedicine 6(2), 257–262 (2010)

    Article  CAS  Google Scholar 

  41. V.T.P. Vinod, P. Saravanan, B. Sreedhar, D.K. Devi, R.B. Sashidhar, A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf. 83(2), 291–298 (2011)

    Article  CAS  Google Scholar 

  42. M. Wang, D. Tian, P. Tian, L. Yuan, Synthesis of micron-SiO2@nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl. Surf. Sci. 283, 389–395 (2013)

    Article  CAS  Google Scholar 

  43. C. Zhu, L. Han, P. Hu, S. Dong, In situ loading of well-dispersed gold nanoparticles on twodimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties. Nanoscale 4(5), 1641–1646 (2012)

    Article  CAS  Google Scholar 

  44. V.S. Coker, J.A. Bennett, N.D. Telling, T. Henkel, J.M. Charnock, G. van der Laan, R.A.D. Pattrick, C.I. Pearce, R.S. Cutting, I.J. Shannon, J. Wood, E. Arenholz, I.C. Lyon, J.R. Lloyd, Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4(5), 2577–2584 (2010)

    Article  CAS  Google Scholar 

  45. B. Zahed, H. Hosseini-Monfared, A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect. Appl. Surf. Sci. 328, 536–547 (2015)

    Article  CAS  Google Scholar 

  46. M. Zargar, A. Abdul Hamid, F. Abu Bakar, M. Nor Shamsudin, K. Shameli, F. Jahanshiri, F. Farahani, Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16(8), 6667–6676 (2011)

    Article  CAS  Google Scholar 

  47. M. Atarod, M. Nasrollahzadeh, S.M. Sajadi, Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 462, 272–279 (2016)

    Article  CAS  Google Scholar 

  48. H.J. Zhai, D.W. Sun, H.S. Wang, Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol. 6(7), 1968–1972 (2006)

    Article  CAS  Google Scholar 

  49. A.H. Gorttapeh, M.H. Hassani, H. Ranji, Recognition and ecological investigation of almond species (Amygdalus spp.) in West Azarbaijan province. Acta Hortic. 726, 253–258 (2005)

    Google Scholar 

  50. S. Yada, G. Huang, K. Lapsley, Natural variability in the nutrient composition of California-grown almonds. J. Food Compos. Anal. 30(2), 80–85 (2013)

    Article  CAS  Google Scholar 

  51. J.M. Martinez, J. Reguant, M.A. Montero, D. Montane, J. Salvado, X. Farriol, Hydrolytic pretreatment of softwood and almond shells. Ind. Eng. Chem. Res. 36(3), 688–696 (1997)

    Article  CAS  Google Scholar 

  52. H. Pirayesh, A. Khazaeian, Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B. 43(3), 1475–1479 (2012)

    Article  CAS  Google Scholar 

  53. P.E. Milbury, C.Y. Chen, G.G. Dolnikowski, J.B. Blumberg, Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 54(14), 5027–5033 (2006)

    Article  CAS  Google Scholar 

  54. A.J. Isfahlan, A. Mahmoodzadeh, A. Hassanzadeh, R. Heidari, Antioxidant and antiradical activities of phenolic extracts from Iranian almond (Prunus amygdalus L.) hulls and shells. Turk. J Biol. 34(2), 165–173 (2010)

    CAS  Google Scholar 

  55. R. Dai, J. Chen, J. Lin, S. Xia, S. Chen, Y. Deng, Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater. 170(1), 141–143 (2009)

    Article  CAS  Google Scholar 

  56. B. Naik, S. Hazra, P. Muktesh, V.S. Prasad, N.N. Ghosh, A facile method for preparation of Ag nanoparticle loaded MCM-41 and study of its catalytic activity for reduction of 4-nitrophenol. Sci. Adv. Mater. 3(6), 1025–1030 (2011)

    Article  CAS  Google Scholar 

  57. A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci. 470, 268–275 (2016)

    Article  CAS  Google Scholar 

  58. H. Zhao, J.H. Kwak, Z.C. Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd. Polym. 68(2), 235–241 (2007)

    Article  CAS  Google Scholar 

  59. K. Das, D. Ray, N.R. Bandyopadhyay, S. Sengupta, Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J. Polym. Environ. 18(3), 355–363 (2010)

    Article  CAS  Google Scholar 

  60. R.K. Petla, S. Vivekanandhan, M. Misra, A.K. Mohanty, N. Satyanarayana, Soybean (glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol. 3(1), 14–19 (2011)

    Article  CAS  Google Scholar 

  61. P. Abinayasri, M. Nageswari, B. Meenarathi, R. Anbarasan, Synthesis of fluorescent diblock copolymer nanoparticle supported catalyst for the reduction of Cr(VI), p-nitrophenol and rhodamine 6G dye: a comparative study. Bull. Mater. Sci. 40(3), 591–598 (2017)

    Article  CAS  Google Scholar 

  62. R. Anbarasan, S. Palanikumar, A.A. Devi, P.H. Chen, K.L. Tung, Synthesis, characterization and application of superhydrophobic low-cost Cu and Al nanoparticles. Int Nano Lett. 8(2), 147–156 (2018)

    Article  CAS  Google Scholar 

  63. W. Rao, H. Liu, G. Lv, D. Wang, L. Liao, Effective degradation of Rh 6G using montmorillonite-supported nano zero-valent iron under microwave treatment. Materials 11(11), 2212 (2018)

    Article  Google Scholar 

  64. A. Omidvar, B. Jaleh, Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. J. Colloid Interface Sci. 496, 44–50 (2017)

    Article  CAS  Google Scholar 

  65. A. Hatamifard, M. Nasrollahzadeh, J. Lipkowski, Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv. 5(111), 91372–91381 (2015)

    Article  CAS  Google Scholar 

  66. Z. Gan, A. Zhao, M. Zhang, W. Tao, H. Guo, Q. Gao, R. Mao, E. Liu, Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes. Dalton Trans. 42(24), 8597–8605 (2013)

    Article  CAS  Google Scholar 

  67. S. Li, H. Li, J. Liu, H. Zhang, Y. Yang, Z. Yang, L. Wang, B. Wang, Highly efficient degradation of organic dyes by palladium nanoparticles decorated on 2D magnetic reduced graphene oxide nanosheets. Dalton Trans. 44(19), 9193–9199 (2015)

    Article  CAS  Google Scholar 

  68. Y. Zhang, P. Zhu, L. Chen, G. Li, F. Zhou, D.D. Lu, R. Sun, F. Zhou, C. Wong, Hierarchical architectures of monodisperse porous Cu microspheres: synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. J. Mater. Chem. A 2(30), 11966–11973 (2014)

    Article  CAS  Google Scholar 

  69. X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2(24), 9040–9047 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express appreciation to the Shahid Bahonar University of Kerman Faculty Research committee funds for its support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Islami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, M., Islami, M.R. & Tikdari, A.M. Green synthesis of Pd nanoparticles supported on modified Nonpareil almond shell using almond hull extract: a beneficial nanocatalyst for convenient reduction of organic dyes. J Mater Sci: Mater Electron 30, 18111–18122 (2019). https://doi.org/10.1007/s10854-019-02164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02164-5

Navigation