Skip to main content
Log in

Effect of NiFe layer thickness on properties of NiFe/Cu superlattices electrodeposited on titanium substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiFe/Cu superlattices having different ferromagnetic NiFe layer thicknesses were grown on polycrystalline titanium substrate from a solution containing nickel, iron and copper ions under potentiostatic control. The NiFe layer thickness of the superlattices was changed from 1.5 to 8 nm while the Cu layer thickness was kept constant at 1 nm. The energy dispersive X-ray analysis revealed that, as the NiFe layer thickness increases, the Ni content of the samples increases, the Cu content decreases and Fe content decreases slightly. NiFe/Cu superlattices were polycrystalline face centred cubic (fcc) structure with NiFe and Cu layers adopting the fcc structure due to the low amount of Fe content in the deposits. The crystal orientation of the superlattices was obtained as {111}. The lattice parameters were calculated and slightly decrease from 0.36012 to 0.35382 nm with increase in the NiFe layer thickness. According to the Scanning Electron Microscopy images, when the NiFe layer thickness increases, the cauliflower region becomes less and then the granular-like regions were seen on the surface of the samples. And, the magnetic measurements showed that the saturation magnetization gradually increased from 12.9 to 291.3 emu/cm3 with increasing NiFe layer thickness from 1.5 to 8 nm, confirming the increase of the Ni contents and decrease of the Cu amount in the superlattices. Also, the coercivities ranging from 25.1 to 63.2 Oe are between the soft and hard magnetic properties. The superlattices having NiFe layer thickness less than 5 nm showed giant magnetoresistance (GMR) while the superlattices having greater NiFe layer thicknesses showed aniotropic magnetoresistance. The GMR values of up to 2% were observed for NiFe/Cu superlattices deposited on titanium substrate. It is seen that this material may have the potential applications in sensor and recording media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Tokarz, P. Wieczorek, A.K. Lis, J. Morgiel, Microstructure of electrodeposited NiFe/Cu multilayers. J. Microsc. 237, 456–460 (2010)

    Article  CAS  Google Scholar 

  2. N. Rajasekaran, S. Mohan, Giant magnetoresistance in electrodeposited films: current status and the influence of parameters. Crit. Rev. Solid State Mater. Sci. 37(3), 158–180 (2012)

    Article  CAS  Google Scholar 

  3. I. Bakonyi, L. Peter, Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog. Mater Sci. 55(3), 107–245 (2010)

    Article  CAS  Google Scholar 

  4. K. Atrak, A. Ramazani, S.T. Fardood, Eco-friendly synthesis of Mg0.5Ni0.5AlxFe2−xO4 magnetic nanoparticles and study of their photocatalytic activity for degradation of direct blue 129 dye. J. Photochem. Photobiol., A 382, 111942 (2019)

    Article  CAS  Google Scholar 

  5. S.T. Fardood, A. Ramazani, Z. Golfar, S.W. Joo, Green synthesis of Ni-Cu-Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis ofpolyhydroquinoline derivatives. Appl. Organomet. Chem. 31, 3823 (2017)

    Article  Google Scholar 

  6. S.T. Fardood, A. Ramazani, S. Moradi, A novel green synthesis of nickel oxide nanoparticles using Arabic gum. Chem. J. Moldova 12(1), 115–118 (2017)

    Article  CAS  Google Scholar 

  7. H.P. Sun, Z. Zhang, W.D. Wang, Microstructure of columnar crystallites in Ni80Fe20/Cu magnetic multilayers. J. Appl. Phys. 87(6), 2835–2839 (2000)

    Article  CAS  Google Scholar 

  8. R. Pereira, P.C. Camargo, A.J.A. de Oliveira, E.C. Pereira, Modulation of the morphology, microstructural and magnetic properties on electrodeposited NiFeCu alloys. Surf. Coat. Technol. 311, 274–281 (2017)

    Article  CAS  Google Scholar 

  9. M. Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes, W. Schwarzacher, Giant magnetoresistance in electrodeposited superlattices. Appl. Phys. Lett. 63(15), 2144–2146 (1993)

    Article  CAS  Google Scholar 

  10. H.K. Kim, D.W. Chun, J.H. Han, K.B. Kim, W.Y. Jeung, Effects of external magnetic field on magnetic properties and surface morphology of electrodeposited CoFeNi alloys. Phys. Stat. Sol. (A) 204(12), 4104–4107 (2007)

    Article  CAS  Google Scholar 

  11. S.Z. Hua, D.S. Lashmore, L. Salmanca-Riba, W. Schwarzacher, L.J. Swartzendruber, R.D. McMichael, L.H. Bennett, R. Hart, Giant mmagnetoresistance peaks in CoNiCu/Cu multilayers grown by electrodeposition. J. Appl. Phys. 76, 6519–6521 (1994)

    Article  CAS  Google Scholar 

  12. S. Zsurzsa, L. Peter, L.F. Kiss, I. Bakonyi, Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: influence of magnetic layer thickness. J. Magn. Magn. Mater. 421, 194–206 (2017)

    Article  CAS  Google Scholar 

  13. C.B. Ene, G. Schmitz, R. Kirchheim, A. Hutten, Stability and thermal reaction of GMR NiFe/Cu thin films. Acta Mater. 53(12), 3383–3393 (2005)

    Article  CAS  Google Scholar 

  14. M. Hecker, D. Tietjen, H. Wendrock, C.M. Schneider, N. Cramer, L. Malkinski, R.E. Camley, Z. Celinski, Thermal stability and degradation mechanism of NiFe/Cu giant magnetoresistance multilayer systems. J. Magn. Magn. Mater. 247, 62–69 (2002)

    Article  CAS  Google Scholar 

  15. K. Attenborough, R. Hart, S.J. Lane, M. Alper, W. Schwarzacher, Magnetoresistance in electrodeposited Ni-Fe-Cu/Cu multilayers. J. Magn. Magn. Mater. 148, 335–336 (1995)

    Article  CAS  Google Scholar 

  16. E. Chassaing, P. Nallet, M.F. Trichet, Electrodeposition of Cu/Fe20Ni80 magnetic multilayers. J. Electrochem. Soc. 143, 98–100 (1996)

    Article  Google Scholar 

  17. H. Kuru, H. Kockar, M. Alper, Giant magnetoresistance (GMR) behaviour of electrodeposited NiFe/Cu multilayers: dependence of non-magnetic and magnetic layer thickness. J. Magn. Magn. Mater. 444, 132–139 (2017)

    Article  CAS  Google Scholar 

  18. H. Kuru, H. Kockar, M. Alper, M. Haciismailoglu, Relation between ferromagnetic layer thickness (NiCu) and properties of NiCu/Cu multilayers. J. Mater. Sci Mater. Elecron. 26, 5014–5021 (2015)

    Article  CAS  Google Scholar 

  19. M. Haciismailoglu, M. Alper, Effect of electrolyte pH and Cu concentration on microstructure of electrodeposited Ni–Cu alloy films. Surf. Coat. Technol. 206, 1430–1438 (2011)

    Article  CAS  Google Scholar 

  20. Y. Chen, Q.P. Wang, C. Cai, Y.N. Yuan, F.H. Cao, Z. Zhang, J.Q. Zhang, Electrodeposition and characterization of nanocrystalline CoNiFe films. Thin Solid Films 520, 3553–3557 (2012)

    Article  CAS  Google Scholar 

  21. Z. Zhang, W.H. Leng, J.Q. Zhang, J.M. Wang, C.N. Cao, Study on the behavior of Zn-Fe alloy electroplating. J. Electroanal. Chem. 516, 127–130 (2001)

    Article  CAS  Google Scholar 

  22. S. Sam, G. Fortas, A. Guittoum, N. Gabouze, S. Djebbar, Electrodeposition of NiFe films on Si(100) substrate. Surf. Sci. 601, 4270–4273 (2007)

    Article  CAS  Google Scholar 

  23. V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, A.S. Roughaghdam, Electrodeposition of Ni-Fe alloys, composites and nano coatings—a review. J. Alloy. Compd. 691, 841–859 (2017)

    Article  CAS  Google Scholar 

  24. A. Vicenzo, P.L. Cavallotti, Growth modes of electrodeposited cobalt. Electrochim. Acta 49(24), 4079–4089 (2004)

    Article  CAS  Google Scholar 

  25. S. Esmaili, M.E. Bahrololoom, L. Peter, Magnetoresistance of electrodeposited NiFeCu alloys. Thin Solid Films 520, 2190–2194 (2012)

    Article  CAS  Google Scholar 

  26. B. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Massachusets, 1978)

    Google Scholar 

  27. B.N. Mondal, A. Basumallick, P.P. Chattopadhyay, Correlation of microstructure and magnetic properties in Cu-Co-Ni alloys. Mater. Sci. Eng. B 166, 174–179 (2010)

    Article  CAS  Google Scholar 

  28. M.S. Khatri, H. Schlörb, S. Fähler, L. Schultz, Correlation of crystallographic structure and magnetic properties of electrodeposited Co-rich Co-Pt films. Phys. Status Solidi 208, 104–108 (2011)

    Article  CAS  Google Scholar 

  29. J. Yi, Z. Yongzhong, J. Ding, G.M. Chow, Z.L. Dong, T. White, X.Y. Gao, A.T.S. Wee, X.J. Yu, An investigation of structure, magnetic properties and magnetoresistance of Ni films prepared by sputtering. J. Magn. Magn. Mater. 284(1), 303–311 (2004)

    Article  CAS  Google Scholar 

  30. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1996)

    Google Scholar 

  31. S.K. Ghosh, A.K. Grover, P. Chowdhury, S.K. Gupta, G. Ravikumar, D.K. Aswal, M.S. Kumar, R.O. Dusane, High magnetoresistance and low coercivity in electrodeposited Co/Cu granular multilayers. Appl. Phys. Lett. 89, 132507–132509 (2006)

    Article  Google Scholar 

  32. M. Haciismailoglu, M. Alper, H. Kockar, O. Karaagac, Electrodeposition and characterization of Co/Cu multilayers. Acta Phys. Pol. A 129(4), 773–775 (2016)

    Article  CAS  Google Scholar 

  33. S.M.S.I. Dulal, E.A. Charles, S. Roy, Characterisation of Co-Ni(Cu)/Cu multilayers deposited from a citrate electrolyte in a flow channel cell. Electrochem. Acta 49, 2041–2049 (2004)

    Article  CAS  Google Scholar 

  34. S.M.S.I. Dulal, E.A. Charles, Optimisation of electrochemical process parameters for giant magnetoresistance of electrodeposited NiCo(Cu)/Cu multilayers. Trans. IMF 86(5), 260–266 (2008)

    Article  CAS  Google Scholar 

  35. H. Kuru, H. Kockar, M. Alper, Electrodeposited NiFeCu/Cu multilayers: effect of Fe ion concentration on properties. J. Magn. Magn. Mater. 373, 135–139 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Balikesir University, Turkey under Research Grant no. BAP 2015/192. The authors would like to thank State Planning Organization,Turkey under Grant No. 2005K120170 for VSM system, Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. TBAG-1771 for electrodeposition system and Balikesir University Research Grant No. BAP 2001/02, 2005/38 for MR system. The authors are very grateful to the Bilkent University/Turkey – UNAM, Institute of Materials Science and Nanotechnology for the EDX, the XRD measurements, and the SEM images by using BAP 2013/85. B. Ülker was thanked for primarily contribution of some sample productions with BAP 2016/144 under the author’s instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Kuru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru, H., Aytekin, N.Ç., Köçkar, H. et al. Effect of NiFe layer thickness on properties of NiFe/Cu superlattices electrodeposited on titanium substrate. J Mater Sci: Mater Electron 30, 17879–17889 (2019). https://doi.org/10.1007/s10854-019-02140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02140-z

Navigation