Skip to main content
Log in

Evolution of phase structure, microstructure and piezoelectric properties in (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

New lead-free piezoelectric (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 ceramics were projected and prepared by using traditional ceramic preparation techniques, and we investigated the effects of Ca0.1(Bi0.5K0.5)0.9ZrO3 content on their surface microstructure, phase structure and electrical properties. A phase pure perovskite structure was obtained for the ceramics within the studied composition range of 0 ≤ x ≤ 0.06, according to X-ray diffraction analysis. Additionally, it was found that adding Ca0.1(Bi0.5K0.5)0.9ZrO3 into the ceramics caused a gradual evolution in the phase structure, and a rhombohedral-tetragonal phase boundary was identified at the composition x = 0.04. The ceramics showed an enhanced piezoelectric activity with compositions near the phase boundary. Furthermore, the phase diagram of the (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 solid solution was built up by combining the X-ray diffraction analysis with the measurement results of the temperature-dependent dielectric behavior. These results indicate that the structural state of (K,Na)NbO3-based ceramics can be easily altered by using a suitable amount of Ca0.1(Bi0.5K0.5)0.9ZrO3 as additive, which will benefit the improvement of piezoelectric properties for such lead-free materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  2. J.G. Wu, Advances in Lead-free Piezoelectric Materials (Springer Nature Singapore Pte Ltd., Singapore, 2018)

    Book  Google Scholar 

  3. P.J. Landrigan, P. Boffetta, P. Apostoli, The reproductive toxicity and carcinogenicity of lead: a critical review. Am. J. Ind. Med. 38, 231–243 (2000)

    Article  CAS  Google Scholar 

  4. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  5. J. Rödel, J.F. Li, Lead-free piezoceramics: status and perspectives. MRS Bull. 43, 576–580 (2018)

    Article  Google Scholar 

  6. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  7. J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium–sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives. J. Mater. Sci. 26, 9297–9308 (2015)

    CAS  Google Scholar 

  8. J.G. Wu, D.Q. Xiao, J.G. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  9. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677–3696 (2013)

    Article  CAS  Google Scholar 

  10. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  11. L.M. Jiang, Y.Y. Li, L.X. Xie, J.G. Wu, Q. Chen, W. Zhang, D.Q. Xiao, J.G. Zhu, Enhanced electrical properties and good thermal stability in K0.48Na0.52NbO3–LiNbO3–BiAlO3 lead-free piezoceramics. J. Mater. Sci. 28, 8500–8509 (2017)

    CAS  Google Scholar 

  12. Y. Chen, D.D. Xue, Z.Q. Chen, X.Q. Jiang, J. Gou, G. Liu, X.K. Liu, Z.P. Xu, Lithium-modified (K0.5Na0.5)NbO3–BiAlO3 lead-free piezoelectric ceramics with high Curie temperature. Ceram. Int. 43, 634–640 (2017)

    Article  CAS  Google Scholar 

  13. R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142–144 (2009)

    Article  CAS  Google Scholar 

  14. H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Z.B. Pei, Perovskite lithium and bismuth modified potassium–sodium niobium lead-free ceramics for high temperature applications. Appl. Phys. Lett. 91, 182909 (2007)

    Article  Google Scholar 

  15. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic. Solid State Commun. 141, 675–679 (2007)

    Article  CAS  Google Scholar 

  16. Y.P. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  CAS  Google Scholar 

  17. Y.Y. Liu, Y.H. Yi, Y.G. Yu, Y.Q. Pan, C.W. He, X.K. Liu, Z.P. Xu, G. Liu, Y. Chen, Microstructures, phase evolution and electrical properties of (1–x)K0.40Na0.60Nb0.96Sb0.04O3-xBi0.5K0.5HfO3 lead-free ceramics. Ceram. Int. 45, 6328–6334 (2019)

    Article  CAS  Google Scholar 

  18. Y. Chen, Y.Y. Liu, D.D. Xue, Z.P. Xu, G. Liu, X.K. Liu, Z.Q. Chen, X.Q. Jiang, Effects of BaHfO3 addition on the phase transition and piezoelectric properties of (K, Na)NbO3-based ceramics. J. Alloy. Compd. 735, 68–74 (2018)

    Article  CAS  Google Scholar 

  19. T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, J.F. Li, Y.L. Gu, J.G. Zhu, S.J. Pennycook, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 10, 528–537 (2017)

    Article  CAS  Google Scholar 

  20. B. Wu, H.J. Wu, J.G. Wu, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138, 15459–15464 (2016)

    Article  CAS  Google Scholar 

  21. K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)

    Article  CAS  Google Scholar 

  22. Y.Q. Pan, Y.G. Yu, Y.H. Yi, Y.Y. Liu, J.C. Li, X.W. Dai, C.W. He, X.K. Liu, Y. Chen, Structural evolution and electrical properties of lead-free (1–x)(K0.4Na0.6)Nb0.96Sb0.04O3-xBa0.1(Bi0.5Na0.5)0.9ZrO3 ceramics. Phys. B 558, 122–126 (2019)

    Article  CAS  Google Scholar 

  23. D.D. Xue, Y.Y. Liu, M. Shi, P. Wang, L.Y. Zhang, G. Liu, Z.Q. Chen, Y. Chen, Composition dependence of phase structure and piezoelectric properties in (0.98 − x)(K0.4Na0.6)NbO3 − 0.02CaZrO3– xBi0.5Na0.5HfO3 ternary ceramics. J. Mater. Sci. 29, 2072–2079 (2018)

    CAS  Google Scholar 

  24. Y. Chen, D.D. Xue, P. Wang, X.Q. Jiang, Z.Q. Chen, X.K. Liu, G. Liu, Z.P. Xu, Lead-free K0.5Na0.5NbO3–Bi0.5Li0.5ZrO3–BiAlO3 ternary ceramics: structure and piezoelectric properties. J. Electroceram. 40, 36–41 (2018)

    Article  CAS  Google Scholar 

  25. K. Wang, B. Malič, J.G. Wu, Shifting the phase boundary: potassium sodium niobate derivates. MRS Bull. 43, 607–611 (2018)

    Article  CAS  Google Scholar 

  26. N. Hussain, K. Sinha, A.J. Dhankhar, B. Joseph, Kumar, Giant piezoelectric behavior in relaxor ferroelectric environment friendly Na0.52K0.44Li0.04Nb0.84Ta0.10Sb0.06O3 ceramics for high temperature applications. J. Mater. Sci. 29, 6403–6411 (2018)

    CAS  Google Scholar 

  27. J. Wu, J. Ma, W. Wu, M. Chen, Phase structure and electrical properties of (1 − xy)K1−zNazNbO3 − x(0.8Bi0.5Na0.5ZrO3 − 0.2Bi0.5K0.5ZrO3) − yBiFeO3 lead-free ceramics. J. Mater. Sci. 28, 14049–14057 (2017)

    CAS  Google Scholar 

  28. Y.Y. Wang, N.X. Xu, Q.L. Zhang, H. Yang, Phase transition and piezoelectric properties of alkali niobate ceramics through composition tuning. RSC Adv. 5, 61989–61997 (2015)

    Article  CAS  Google Scholar 

  29. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    Article  CAS  Google Scholar 

  30. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012)

    Article  CAS  Google Scholar 

  31. X. Lv, J.G. Wu, C.L. Zhao, D.Q. Xiao, J.G. Zhu, Z.H. Zhang, C.H. Zhang, X.X. Zhang, Enhancing temperature stability in potassium-sodium niobate ceramics through phase boundary and composition design. J. Eur. Ceram. Soc. 39, 305–315 (2019)

    Article  CAS  Google Scholar 

  32. Q.X. Hong, Z.X. Xu, Y.Y. Zhang, T.W. Chen, F.Y. Fan, L. Guo, M. Xu, J.M. Yan, L.H. Luo, R.K. Zheng, Improved upconversion photoluminescence properties of 0.965K0.4Na0.58Li0.02Nb0.96Sb0.04O3–0.035Bi0.5K0.5ZrO3:0.25%Er/xIn lead-free piezoelectric ceramics with balanced piezoelectric coefficient and Curie temperature. J. Mater. Sci. 29, 20923–20930 (2018)

    CAS  Google Scholar 

  33. D. Damjanovic, Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663–2676 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Project of Chongqing Municipal Education Commission (No. yjg183037). The authors are also grateful for the grant support provided by the “Zeng Sumin Cup” Research Project of School of Materials and Energy, Southwest University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ding, Y., Du, X. et al. Evolution of phase structure, microstructure and piezoelectric properties in (1 − x)(K0.4Na0.6)Nb0.96Sb0.04O3xCa0.1(Bi0.5K0.5)0.9ZrO3 lead-free ceramics. J Mater Sci: Mater Electron 30, 17856–17862 (2019). https://doi.org/10.1007/s10854-019-02137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02137-8

Navigation