Skip to main content
Log in

Hydrothermal synthesis of nanoporous lead selenide thin films: photoelectrochemical and resistive switching memory applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The interconnected nanoporous lead selenide (PbSe) thin films were synthesized with the aid of polyvinyl alcohol (PVA) as a surface directing agent by simple hydrothermal route. Films were deposited with different time intervals like 1, 2 and 3 h. Effect of time variation was studied by structural, morphological and optical characterizations. XRD analysis revealed that the film exhibit a cubic phase of PbSe. SEM study shows an evolution in nanoflakes like morphological feature. It is observed that, the nanoflakes become denser with an increase in the diameter of the platelets as the deposition time increases. Interconnected nanoporous network, forming well defined 3D nanoenvelopes has been developed to analyze solar cell and resistive switching properties. The photoelectrochemical (PEC) performance of nanoporous PbSe thin films was tested in Polysulfide electrolyte. Among all PbSe films, the sample prepared at 3 h shows higher PEC performance with maximum short circuit current 97 µA/cm2 and open circuit voltage 110 mV. In addition to this, Ag/PbSe/FTO thin film device shows the photo-induced resistive switching behavior. The non-volatile memory results suggested that the memory device is able to switch up to 104 cycles and store the data up to 103 s with good uniformity during the resistive switching process. The analysis of I–V results revealed that the Ohmic and space-charge-limited current are responsible for current conduction in the Ag/PbSe/FTO thin film memory device. The results of present investigation suggest that the nanoporous lead selenide thin films are potential candidate for the photoelectrochemical and resistive switching memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.A. Khan, I. Khan, I. Ahmad, Z. Ali, Mater. Sci. Semicond. Proc. 48, 85 (2016)

    Article  Google Scholar 

  2. T.S. Bhat, S.S. Mali, A.D. Sheikh, S.D. Korade, K.K. Pawar, C.K. Hong, J.H. Kim, P.S. Patil, Opt. Mater. 73, 781 (2017)

    Article  CAS  Google Scholar 

  3. S. Thanikaikarasan, T. Mahalingam, V. Dhanasekaran, A. Kathalingam, J.K. Rhee, J. Mater. Sci. 23, 1562 (2012)

    CAS  Google Scholar 

  4. J. Xu, J.P. Ge, Y.D. Li, J. Phys. Chem. B 110, 2497 (2006)

    Article  CAS  Google Scholar 

  5. T.S. Bhat, S.S. Mali, A.D. Sheikh, N.L. Tarwal, S.D. Korade, C.K. Hong, J.H. Kim, P.S. Patil, Mater. Today Comm. 16, 186 (2018)

    Article  CAS  Google Scholar 

  6. T.S. Bhat, S.A. Vanalakar, R.S. Devan, S.S. Mali, S.A. Pawar, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci.: Mater. Electron. 27, 4996 (2016)

    CAS  Google Scholar 

  7. T.S. Bhat, A.V. Shinde, R.S. Devan, A.M. Teli, Y.R. Ma, J.H. Kim, P.S. Patil, Appl. Phys. A 124, 34 (2018)

    Article  Google Scholar 

  8. F.W. Wise, Acc. Chem. Res. 33, 773 (2000)

    Article  CAS  Google Scholar 

  9. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Nano Lett. 5, 865 (2005)

    Article  CAS  Google Scholar 

  10. A.D. Andreev, A.A. Lipovskii, Phys. Rev. B 59, 15402 (1999)

    Article  CAS  Google Scholar 

  11. E. Lifshitz, M. Bashouti, V. Kloper, A. Kigel, M.S. Eisen, S. Berger, Nano Lett. 3, 857 (2003)

    Article  CAS  Google Scholar 

  12. W. Zhang, L. Zhang, Y. Cheng, Z. Hui, X. Zhang, Y. Xie, Y.Q. Qian, Mater. Res. Bull. 35, 2000 (2009)

    Article  Google Scholar 

  13. T. Kanniainen, S. Lindroos, J. Ihanus, M. Leskela, J. Mater. Chem. 6, 983 (1996)

    Article  CAS  Google Scholar 

  14. N. Mukherjee, A. Mondal, J. Electron. Mater. 39, 1177 (2010)

    Article  CAS  Google Scholar 

  15. E.I. Rogacheva, T.V. Tavrina, S.N. Grigorov, O.N. Nashchekina, V.V. Volobuev, A.G. Fedorov, K.A. Nasedkin, M.S. Dresselhaus, J. Electron. Mater. 31, 298 (2002)

    Article  CAS  Google Scholar 

  16. C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62, 1957 (2001)

    Article  CAS  Google Scholar 

  17. T.S. Bhat, R.S. Devan, S.S. Mali, A.S. Kamble, S.A. Pawar, I.Y. Kim, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci. 25, 4501 (2014)

    CAS  Google Scholar 

  18. A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, T.D. Dongale, Mater. Des. 151, 37 (2018)

    Article  CAS  Google Scholar 

  19. W.P. Lin, S.J. Liu, T. Gong, Q. Zhao, W. Huang, Adv. Mater. 26, 570 (2014)

    Article  CAS  Google Scholar 

  20. T.D. Dongale, A.A. Bagade, S.V. Mohite, A.D. Rananavare, M.K. Orlowski, R.K. Kamat, K.Y. Rajpure, J. Mater. Sci. 29, 3231 (2018)

    CAS  Google Scholar 

  21. P. Rananavare, S.J. Kadam, S.V. Prabhu, S.S. Chavan, P.V. Anbhule, T.D. Dongale, Mater. Lett. 232, 99 (2018)

    Article  CAS  Google Scholar 

  22. S.T. Gurme, T.D. Dongale, S.N. Surwase, S.D. Kumbhar, G.M. More, V.L. Patil, P.S. Patil, R.K. Kamat, J.P. Jadhav, Phys. Status Solidif. 215, 1800550 (2018)

    Article  Google Scholar 

  23. F.H.A. El-kader, N.A. Hakeem, I.S. Elashmawi, A.M. Ismail, Indian J. Phys. 87, 983 (2013)

    Article  Google Scholar 

  24. S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)

    Article  CAS  Google Scholar 

  25. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Boston, 1956)

    Google Scholar 

  26. X. Wang, K. Li, Y. Dong, K. Jiang, Cryst. Res. Technol. 45, 94 (2010)

    Article  Google Scholar 

  27. D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.J. Park, Dalton Trans. 42, 6459 (2013)

    Article  CAS  Google Scholar 

  28. I. Stambolova, V. Blaskov, M. Shipochka, S. Vassilev, V. Petkova, A. Loukanov, Mater. Sci. Eng., B 177, 1029 (2012)

    Article  CAS  Google Scholar 

  29. D.S. Dalavi, M.J. Suryavanshi, D.S. Patil, S.S. Mali, A.V. Moholkar, S.S. Kalagi, S.A. Vanalkar, S.R. Kang, J.H. Kim, P.S. Patil, Appl. Surf. Sci. 257, 2647 (2011)

    Article  CAS  Google Scholar 

  30. A. Kamble, B. Sinha, G. Agawane, S. Vanalakar, I.Y. Kim, J.Y. Kim, S.S. Kale, P. Patil, J.H. Kim, Phys. Chem. Chem. Phys. 18, 28024 (2016)

    Article  CAS  Google Scholar 

  31. J.J. Zhu, H. Wang, S. Xu, H.Y. Chen, Langmuir 18, 3306 (2002)

    Article  CAS  Google Scholar 

  32. S. Gorer, A.A. Yaron, G. Hodes, J. Phys. Chem. 99, 16442 (1995)

    Article  CAS  Google Scholar 

  33. B. Li, Y. Xie, Y. Xu, C. Wu, Z. Li, J. Solid State Chem. 179, 56 (2006)

    Article  CAS  Google Scholar 

  34. T.S. Bhat, S.S. Mali, S.D. Korade, J.S. Shaikh, M.M. Karanjkar, C.K. Hong, J.H. Kim, P.S. Patil, J. Mater. Sci.: Mater. Electron. 28, 304 (2017)

    CAS  Google Scholar 

  35. R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B. 105, 1984 (2001)

    Article  CAS  Google Scholar 

  36. S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, Electrochim. Acta 59, 113 (2012)

    Article  CAS  Google Scholar 

  37. N. Li, H. Wang, Q. Lin, H. Shen, A. Wang, L. Qian, F. Guo, L.S. Li, RSC Adv. 5, 39714 (2015)

    Article  CAS  Google Scholar 

  38. M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sustain. Energy Rev. 37, 397 (2014)

    Article  CAS  Google Scholar 

  39. V.S. Dongle, A.A. Dongare, N.B. Mullani, P.S. Pawar, P.B. Patil, J. Heo, T.J. Park, T.D. Dongale, J. Mater. Sci.: Mater. Electron. 29, 18733 (2018)

    CAS  Google Scholar 

  40. S.R. Patil, M.Y. Chougale, T.D. Rane, S.S. Khot, A.A. Patil, O.S. Bagal, S.D. Jadhav, A.D. Sheikh, S. Kim, T.D. Dongale, Electronics 7, 445 (2018)

    Article  Google Scholar 

  41. T.D. Dongale, K.V. Khot, S.V. Mohite, N.K. Desai, S.S. Shinde, V.L. Patil, S.A. Vanalkar, A.V. Moholkar, K.Y. Rajpure, P.N. Bhosale, P.S. Patil, P.K. Gaikwad, R.K. Kamat, Int. Nano Lett. 7, 209 (2017)

    Article  CAS  Google Scholar 

  42. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  CAS  Google Scholar 

  43. G. Bersuker, D.C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M.J. Porti, Appl. Phys. 110, 124518 (2011)

    Article  Google Scholar 

  44. Y. Yang, W. Lu, Nanoscale 5, 10076 (2013)

    Article  CAS  Google Scholar 

  45. T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Mater. Sci. Semicond. Proc. 38, 228 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. A. S. Kalekar would like to thank ICT for the financial assistance under TEQIP-III Program. Dr. Dhanaji S. Dalavi would like to thank Shivaji University, Kolhapur for the financial assistance under the ‘Research Initiation Scheme’ letter no. SU/C & U.D Section/86/233. Dr. T. D. Dongale would like to thank the Shivaji University, Kolhapur for the financial assistance under the ‘Research Initiation Scheme’. This work was partially supported by the University Grant Commission, New Delhi, Government of India through Project No. 43-517/2014 (SR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tukaram D. Dongale or Pramod S. Patil.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.S., Kalekar, A.S., Dalavi, D.S. et al. Hydrothermal synthesis of nanoporous lead selenide thin films: photoelectrochemical and resistive switching memory applications. J Mater Sci: Mater Electron 30, 17725–17734 (2019). https://doi.org/10.1007/s10854-019-02122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02122-1

Navigation