Skip to main content
Log in

Broadband near-IR photoluminescence in Ni2+ doped gallium silicate glass–ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Broadband and tunable near-infrared (NIR) emission of Ni2+ doped glass–ceramics (GCs) is highly attractive due to their potential to address the challenge of broadband optical amplification in the optical communication band. However, optical activity of Ni2+ in different glass matrix as well as nucleation and crystallization processes in relevant glasses have not been understood fully. Here, broadband NIR photoluminescence was realized through precipitation of LiGa5O8:Ni2+ nanocrystals (NCs) within an alkali gallium-silicate glass matrix by melt-quenching and successive heat treatment. Upon exciting by a 980 nm laser diode, we observed NIR photoluminescence band centered at ~ 1310 nm with full width at half maximum of wider than 300 nm, which was originated from 3T2g(3F) → 3A2g(3F) electronic transition of octahedral coordinated Ni2+ in LiGa5O8 NCs embedded in the GCs. Controlled precipitation of NCs, LiGa5O8:Ni2+ and Ga2O3:Ni2+ were achieved by tailoring the composition of alkali gallium-silicate glass matrix. ab initio molecular dynamics simulation was carried out to clarify the formation of nanophases in the glass system. We confirmed that optical properties of transparent GCs containing Ni2+ NCs can be realized by changing molar percentages of Ga2O3. Our results offer a new insight into the precipitation of NCs in oxide glasses and Ni2+ doped GCs, which may be applicable in the photonic fields, such as optical amplifier and laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker, C. Rüssel, Broadband near-IR emission from cubic perovskite KZnF3: Ni2+ nanocrystals embedded glass-ceramics. Opt. Lett. 40, 5263–5266 (2015)

    Article  CAS  Google Scholar 

  2. S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, J. Qiu, Size-induced crystal field parameter change and tunable infrared photoluminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics. Nanotechnology. 19, 015702 (2007)

    Article  Google Scholar 

  3. J. Cao, H. Guo, F. Hu, L. Li, S. Xu, M. Peng, Instant precipitation of KMgF3:Ni2+ nanocrystals with broad emission (1.3–2.2 μm) for potential combustion gas sensors. J. Am. Ceram. Soc. 101, 3890–3899 (2018)

    Article  CAS  Google Scholar 

  4. S. Xu, D. Deng, R. Bao, H. Ju, S. Zhao, H. Wang, B. Wang, Ni2+-doped new silicate glass-ceramics for super broadband optical amplification. JOSA B 25, 1548–1552 (2008)

    Article  CAS  Google Scholar 

  5. X. Liu, J. Zhou, S. Zhou, Y. Yue, J. Qiu, Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 97, 38–96 (2018)

    Article  CAS  Google Scholar 

  6. S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, J. Qiu, Broadband optical amplification in silicate glass–ceramic containing β-Ga2O3:Ni2+ nanocrystals. Opt. Express 15, 5477–5481 (2007)

    Article  CAS  Google Scholar 

  7. L.R. Pinckney, G.H. Beall, in Transition element-doped crystals in glass. Inorganic Optical Materials III (2001), pp. 93–100

  8. I. Morad, X. Liu, J. Qiu, Surface crystallized Mn-doped glass-ceramics for tunable photoluminescence. J. Am. Ceram. Soc. (2019). https://doi.org/10.1111/jace.16473

    Article  Google Scholar 

  9. N. Golubev, E. Ignat’eva, R. Lorenzi, A. Paleari, V. Sigaev, Broadband photoluminescence in nanostructured glasses. Glass Ceram. 70, 124–129 (2013)

    Article  CAS  Google Scholar 

  10. T. Suzuki, Y. Arai, Y. Ohishi, Crystallization processes of Li2O–Ga2O3–SiO2–NiO system glasses. J. Non-Cryst. Solids 353, 36–43 (2007)

    Article  CAS  Google Scholar 

  11. N. Golubev, V. Savinkov, E. Ignat’eva, S. Lotarev, P. Sarkisov, V. Sigaev, L. Bulatov, V. Mashinskii, Nickel-doped gallium-containing glasses luminescent in the near-infrared spectral range. Glass Phys. Chem 36, 657–662 (2010)

    Article  CAS  Google Scholar 

  12. S. Khonthon, S. Morimoto, Y. Ohishi, Photoluminescence characteristics of Ni2+ ion-doped glasses and glass-ceramics in relation to its coordination number. J. Solid Mech. Mater. Eng. 1, 439–446 (2007)

    Article  Google Scholar 

  13. S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, J. Qiu, Intense infrared photoluminescence in transparent glass-ceramics containing β-Ga2O3:Ni2+ nanocrystals. J. Phys. Chem. C 111, 7335–7338 (2007)

    Article  CAS  Google Scholar 

  14. D. Chen, Near-infrared long-lasting phosphorescence in transparent glass ceramics embedding Cr3+-doped LiGa5O8 nanocrystals. J. Eur. Ceram. Soc. 34, 4069–4075 (2014)

    Article  CAS  Google Scholar 

  15. S. Zhou, N. Jiang, B. Wu, J. Hao, J. Qiu, Ligand-driven wavelength-tunable and ultra-broadband infrared photoluminescence in single-ion-doped transparent hybrid materials. Adv. Funct. Mater. 19, 2081–2088 (2009)

    Article  CAS  Google Scholar 

  16. M. Brik, S. Camardello, A. Srivastava, N. Avram, A. Suchocki, Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect. ECS J. Solid State Sci. Technol. 5, R3067–R3077 (2016)

    Article  CAS  Google Scholar 

  17. S. Wang, J. Zhang, D. Luo, F. Gu, D. Tang, Z. Dong, G.E. Tan, W. Que, Transparent ceramics: processing, materials and applications. Prog. Solid State Chem. 41, 20–54 (2013)

    Article  Google Scholar 

  18. V. Sigaev, N. Golubev, E. Ignat’eva, V. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, A. Paleari, Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission. Nanotechnology. 23, 015708 (2011)

    Article  Google Scholar 

  19. B. Wu, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, J. Qiu, Broadband infrared photoluminescence from transparent glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals. Appl. Phys. B 87, 697–699 (2007)

    Article  Google Scholar 

  20. T. Suzuki, G.S. Murugan, Y. Ohishi, Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 (2005)

    Article  Google Scholar 

  21. L. Cormier, Nucleation in glasses-new experimental findings and recent theories. Procedia Mater. Sci. 7, 60–71 (2014)

    Article  CAS  Google Scholar 

  22. P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, K. Yumashev, Influence of NiO on phase transformations and optical properties of ZnO–Al2O3–SiO2 glass-ceramics nucleated by TiO2 and ZrO2. Part II. Optical absorption and photoluminescence. J. Non-Cryst. Solids 376, 99–105 (2013)

    Article  CAS  Google Scholar 

  23. K. Baral, A. Li, W.-Y. Ching, Ab initio modeling of structure and properties of single and mixed alkali silicate glasses. J. Phys. Chem. A 121, 7697–7708 (2017)

    Article  CAS  Google Scholar 

  24. N. Karpukhina, R. Hill, R. Law, Crystallisation in oxide glasses-a tutorial review. Chem. Soc. Rev. 43, 2174–2186 (2014)

    Article  CAS  Google Scholar 

  25. J. Zhao, R. Ma, X. Chen, B. Kang, X. Qiao, J. Du, X. Fan, U. Ross, From phase separation to nanocrystallization in fluorosilicate glasses: structural design of highly luminescent glass-ceramics. J. Phys. Chem. C 120, 17726–17732 (2016)

    Article  CAS  Google Scholar 

  26. W. Zheng, M. Lin, J. Cheng, Effect of phase separation on the crystallization and properties of lithium aluminosilicate glass-ceramics. Glass Phys. Chem. 39, 142–149 (2013)

    Article  CAS  Google Scholar 

  27. B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, C. Zhu, Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals. J. Mater. Res. 22, 3410–3414 (2007)

    Article  CAS  Google Scholar 

  28. J. Donegan, F. Bergin, T. Glynn, G. Imbusch, J. Remeika, The optical spectroscopy of LiGa5O8:Ni2+. J. Photoluminescence 35, 57–63 (1986)

    Article  CAS  Google Scholar 

  29. M.A. Ali, J. Ren, X. Liu, X. Qiao, J. Qiu, Understanding enhanced upconversion photoluminescence in oxyfluoride glass-ceramics based on local structure characterizations and molecular dynamics simulations. J. Phys. Chem. C 121, 15384–15391 (2017)

    Article  CAS  Google Scholar 

  30. R. Ceccato, R.D. Maschio, S. Gialanella, G. Mariotto, M. Montagna, F. Rossi, M. Ferrari, K. Lipinska-Kalita, Nucleation of Ga2O3 nanocrystals in the K2O–Ga2O3–SiO2 glass system. J. Appl. Phys. 90, 2522–2527 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018YFB1107200), the National Natural Science Foundation of China (Grant No. 51772270), Open funds of State Key Laboratory of Precision Spectroscopy, East China Normal University, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Endale T. Basore or Jianrong Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basore, E.T., Liu, X. & Qiu, J. Broadband near-IR photoluminescence in Ni2+ doped gallium silicate glass–ceramics. J Mater Sci: Mater Electron 30, 17715–17724 (2019). https://doi.org/10.1007/s10854-019-02121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02121-2

Navigation