Skip to main content
Log in

Increasing sensitivity of ZnO nanoparticles by hydrogenation and sensing reaction mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sensing reaction mechanism is decisive for improvement of the sensing property of metal oxide sensing materials. Herein, we demonstrated a conceptually different approach to improving sensing property of ZnO nanoparticles by increasing quantity of the surface unsaturated 3-coordinated Zn atoms through hydrogenation. The surface 3-coordinated Zn atoms play a pivotal role in sensing reaction. They can produce electrons, adsorb O2 and catalyze the gas sensing reaction between the adsorbed oxygen and test gas. A sensing mechanism of the unsaturated Zn atom serving as a sensing reactive site is presented for the first time. The mechanism provides a deep understanding for sensing and catalytic reaction mechanisms. In addition, the sensing performance of other sensing materials and reactive activity of catalysts may be enhanced by increasing concentration of surface unsaturated metal atom through hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)

    Article  CAS  Google Scholar 

  2. M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)

    Article  CAS  Google Scholar 

  3. X. Su, H. Zhao, F. Xiao, J. Jian, J. Wang, Synthesis of flower-like 3D ZnO microstructures and their size-dependent ethanol sensing properies. Ceram. Int. 38, 1643–1647 (2012)

    Article  CAS  Google Scholar 

  4. E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor application. Adv. Mater. 12, 965–968 (2000)

    Article  CAS  Google Scholar 

  5. X.G. Han, M.S. Jin, S.F. Xie, Q. Kuang, Z.Y. Jiang, Y.Q. Jiang, Z.X. Xie, L.S. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. Int. Ed. 121, 9344–9347 (2009)

    Article  Google Scholar 

  6. X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)

    Article  CAS  Google Scholar 

  7. X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z.C. Shi, Ş. Ţălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci.: Mater. Electron. 30, 14687–14694 (2019)

    CAS  Google Scholar 

  8. L.Q. Sun, X. Han, K. Liu, S. Yin, Q.L. Chen, Q. Kuang, X.G. Han, Z.X. Xie, C. Wang, Template-free construction of hollow α-Fe2O3 hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties. Nanoscale 7, 9416–9420 (2015)

    Article  CAS  Google Scholar 

  9. J.J. Ouyang, J. Pei, Q. Kuang, Z.X. Xie, L.S. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces 6, 12505–12514 (2014)

    Article  CAS  Google Scholar 

  10. M. Curreli, C. Li, Y.H. Sun, B. Lei, M.A. Gundersen, M.E. Thompson, C.W. Zhou, Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 127, 6922–6923 (2005)

    Article  CAS  Google Scholar 

  11. Y.Y. He, X. Zhao, Y. Cao, X.X. Zou, G.D. Li, Facile synthesis of In2O3 nanospheres with excellent sensitivity totrace explosive nitro-compounds. Sens. Actuators B 228, 295–301 (2016)

    Article  CAS  Google Scholar 

  12. M. Wang, Y. Wang, J.F. Liu, C.J. Pei, B. Liu, Y.K. Yuan, H. Zhao, S.Z. Liu, H.Q. Yang, Enhanced sensing performance and sensing mechanism of hydrogenated NiO particles. Sens. Actuators B 250, 208–214 (2017)

    Article  CAS  Google Scholar 

  13. X.Y. Lai, G.X. Shen, P. Xue, B.Q. Yan, H. Wang, P. Li, W.T. Xia, J.Z. Fang, Ordered mesoporous NiO with thin pore walls and its enhanced sensing performance for formaldehyde. Nanoscale 7, 4005–4012 (2015)

    Article  CAS  Google Scholar 

  14. J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867–871 (2006)

    Article  CAS  Google Scholar 

  15. Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, Z.G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2, 13602–13611 (2014)

    Article  CAS  Google Scholar 

  16. L.Q. Shi, J.B. Cui, F. Zhao, D.J. Wang, T.F. Xie, Y.H. Lin, High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO. Phys. Chem. Chem. Phys. 17, 31316–31323 (2015)

    Article  CAS  Google Scholar 

  17. M. Sinha, R. Mahapatra, B. Mondal, T. Maruyama, R. Ghosh, Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J. Phys. Chem. C 120, 3019–3025 (2016)

    Article  CAS  Google Scholar 

  18. X.M. Wang, F.Z. Sun, Y.Q. Duan, Z.P. Yin, W. Luo, Y.A. Huang, J.K. Chen, Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–11405 (2015)

    Article  CAS  Google Scholar 

  19. J.Q. Xu, Z.G. Xue, N. Qin, Z.X. Cheng, Q. Xiang, The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. Sens. Actuators B 242, 148–157 (2017)

    Article  CAS  Google Scholar 

  20. L. Li, F. Yang, J. Yu, X.W. Wang, L.N. Zhang, Y. Chen, H.Q. Yang, In situ growth of ZnO nanowires on Zn comb-shaped interdigitating electrodes and their photosensitive and gas-sensing characteristics. Mater. Res. Bull. 47, 3971–3975 (2012)

    Article  CAS  Google Scholar 

  21. Z.D. Hu, Q. Chen, Z. Li, Y. Yu, L.M. Peng, Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. J. Phys. Chem. C 114, 881–889 (2010)

    Article  CAS  Google Scholar 

  22. J. Rao, A. Yu, C.L. Shao, X.F. Zhou, Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Appl. Mater. Interfaces 4, 5346–5352 (2012)

    Article  CAS  Google Scholar 

  23. M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C 115, 12763–12773 (2011)

    Article  CAS  Google Scholar 

  24. J.L. Wang, C.J. Pei, L.J. Cheng, W.P. Wan, Q. Zhao, H.Q. Yang, S.Z. Liu, Responses of three-dimensional porous ZnO foam structures to the trace level of triethylamine and ethanol. Sens. Actuators B 223, 650–657 (2016)

    Article  CAS  Google Scholar 

  25. Q. Zhao, Q. Shen, F. Yang, H. Zhao, B. Liu, Q. Liang, A.H. Wei, H.Q. Yang, S.Z. Liu, Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar 0001 surfaces. Sens. Actuators B 195, 71–79 (2014)

    Article  CAS  Google Scholar 

  26. Z.H. Wang, Z.W. Tian, D.M. Han, F.B. Gu, Highly sensitive and selective ethanol sensor fabricated with In-doped 3DOM ZnO. ACS Appl. Mater. Interfaces 8, 5466–5474 (2016)

    Article  CAS  Google Scholar 

  27. S.L. Bai, T. Guo, Y.B. Zhao, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, Mechanism enhancing gas sensing and first-principle calculations of Al-doped ZnO nanostructures. J. Mater. Chem. A 1, 11335–11342 (2013)

    Article  CAS  Google Scholar 

  28. H.S. Woo, C.H. Kwak, J.H. Chung, J.H. Lee, Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. ACS Appl. Mater. Interfaces 6, 22553–22560 (2014)

    Article  CAS  Google Scholar 

  29. C.M. Chang, M.H. Hon, I.C. Leu, Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl. Mater. Interfaces 5, 135–143 (2013)

    Article  CAS  Google Scholar 

  30. S. Ghosh, C. RoyChaudhuri, R. Bhattacharya, H. Saha, N. Mukherjee, Palladium-silver-activated ZnO surface: highly selective methane sensor at reasonably low operating temperature. ACS Appl. Mater. Interfaces 6, 3879–3887 (2014)

    Article  CAS  Google Scholar 

  31. X.H. Liu, J. Zhang, X.Z. Guo, S.H. Wu, S.R. Wang, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1178–1184 (2010)

    Article  CAS  Google Scholar 

  32. X.W. Li, X. Zhou, H. Guo, C. Wang, J.Y. Liu, P. Sun, F.M. Liu, G.Y. Lu, Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 6, 18661–18667 (2014)

    Article  CAS  Google Scholar 

  33. C.W. Na, H.S. Woo, I.-D. Kim, J.H. Lee, Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem. Commun. 47, 5148–5150 (2011)

    Article  CAS  Google Scholar 

  34. D. Barreca, E. Comini, A.P. Ferrucci, A. Gasparotto, C. Maccato, C. Maragno, G. Sberveglieri, E. Tondello, First example of ZnO-TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition, and gas sensing performances. Chem. Mater. 19, 5642–5649 (2007)

    Article  CAS  Google Scholar 

  35. S.L. Bai, S. Chen, Y.B. Zhao, T. Guo, R.X. Luo, D.Q. Li, A.F. Chen, Gas gensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method. J. Mater. Chem. A 2, 16697–16706 (2014)

    Article  CAS  Google Scholar 

  36. D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci.: Mater. Electron. 28, 7784–7796 (2017)

    CAS  Google Scholar 

  37. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci.: Mater. Electron. 27, 12291–12296 (2016)

    CAS  Google Scholar 

  38. P.K. Baitha, J. Manam, Structural and spectroscopic diagnosis of ZnO/SnO2 nanocomposite influenced by Eu3+. J. Rare Earths 33, 805–813 (2015)

    Article  CAS  Google Scholar 

  39. Y. Chen, H. Zhao, B. Liu, H.Q. Yang, Charge separation between wurtzite ZnO polar 001 surfaces and their enhanced photocatalytic activity. Appl. Catal. B 163, 189–197 (2015)

    Article  CAS  Google Scholar 

  40. H.S. Kim, E.S. Jung, W.J. Lee, J.H. Kim, S.O. Ryu, S.Y. Choi, Effects of oxygen concentration on the electrical properties of ZnO films. Ceram. Int. 34, 1097–1101 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872178, 51702204 and 201501116), the National Key Research Program of China (Grant No. 2016YFA0202403), DNL Cooperation Fund CAS (Grant No. DNL180311), China Postdoctoral Science Foundation (Grant No. 2017M613051), and the 111 Project (Grant No. B14041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqing Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, C., Liu, B., Liu, J. et al. Increasing sensitivity of ZnO nanoparticles by hydrogenation and sensing reaction mechanism. J Mater Sci: Mater Electron 30, 17674–17681 (2019). https://doi.org/10.1007/s10854-019-02117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02117-y

Navigation