Skip to main content
Log in

Synthesis of NiO–CeO2 nanocomposite for electrochemical sensing of perilous 4-nitrophenol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well-crystalline NiO–CeO2 nanocomposites have been fabricated by ignition method and investigated by X-ray diffraction, Fourier Transform Infrared, UV–Vis diffuse reflectance spectroscopy, Thermal gravimetric analysis, BET surface area, and transmission electron microscopy. The detailed characterizations disclosed that the pre-calcine (700 °C) nanocomposite (NCC) has two pure phases: cubic fluorite phase (CeO2) and cubic face-centered phase (NiO). Finally, the pre-calcine NCC nanocomposite was applied as electron intermediators for the electrochemical sensing of 4-nitrophenol (4-NP). Compared with as-grown modified electrode (NCG/GCE), pre-calcine electrode (NCC/GCE) exhibited more excellent conductivity and better electrocatalytic mediator for 4-NP. It was found that the NCC/GCE sensor displayed diffusion-controlled kinetics and excellent sensitivity (3.68 AμM−1 cm−2). The reduction current is directly proportional to the 4-NP concentration, ranging from 1 to 20 μM with lower detection limit of 2.48 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.L. Buikema, M.J. McGimres, J. Cairns, Phenolics in aquatic ecosystems: a selected review of recent literature. Mar. Environ. Res. 2, 87–181 (1979)

    Article  CAS  Google Scholar 

  2. C. Schummer, C. Groff, J.A. Chami, F. Jaber, M. Millet, Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Sci. Total Environ. 407, 5637–5643 (2009)

    Article  CAS  Google Scholar 

  3. P. Wang, J. Xiao, A. Liao, P. Li, M. Guo, Y. Xia, Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. Electrochim. Acta 176, 448–455 (2015)

    Article  CAS  Google Scholar 

  4. X.M. Xu, Z. Liu, X. Zhang, S. Duan, S. Xu, C.L. Zhou, Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim. Acta 58, 142–149 (2011)

    Article  CAS  Google Scholar 

  5. S.S. Li, D. Du, J. Huang, H.Y. Tu, Y.Q. Yang, A.D. Zhang, One-step electrode-position of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPshybrid film and its application in the selective determination of p-nitrophenol. Analyst 138, 2761–2768 (2013)

    Article  CAS  Google Scholar 

  6. J.A. Padilla-Sanchez, P. Plaza-Bolanos, R. Romero-Gonzalez, N. Barco-Bonilla, J.L. Martin ez-Vidal, A. Garrido-Frenich, Simultaneous analysis of chlorophenols, alkyl phenols, nitrophenols and cresols in waste water effluents, using solid phase extraction and further determination by gas chromatography-tandem mass spectro metry. Talanta 85, 2397–2404 (2011)

    Article  CAS  Google Scholar 

  7. R.J. Chung, M.I. Leong, S.D. Huang, Determination of nitrophenols using ultra- high pressure liquid chromatography and a new manual shaking-enhanced, ultra sound-assisted emulsification microextraction method based on solidification of a floating organic droplet. J. Chromatogr. A 1246, 55–61 (2012)

    Article  CAS  Google Scholar 

  8. M.C. Alcudia-Leon, R. Lucena, S. Cardenas, M. Valcarcel, Determination of phenols in waters by stir membrane liquid-liquid-liquid microextraction coupled to liquid chromatography with ultraviolet detection. J Chromatogr. A 1218(2176–21), 81 (2011)

    Google Scholar 

  9. F. Bagheban-Shahri, A. Niazi, A. Akrami, Simultaneous spectrophotometric determination of nitrophenol isomers in environmental samples using first derivative of the density ratio spectra. J. Chem. Health Risks 2, 21–28 (2012)

    Google Scholar 

  10. X.F. Guo, Z.H. Wang, S.P. Zhou, The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64, 135–139 (2004)

    Article  CAS  Google Scholar 

  11. M. Manera, M. Miró, J.M. Estela, V. Cerdà, M.A. Segundo, J.L.F.C. Lima, Flow-through solid-phase reflectometric method for simultaneous multiresidue determina- tion of nitrophenol derivatives. Anal. Chim. Acta 600, 155–163 (2007)

    Article  CAS  Google Scholar 

  12. S. Tingry, C. Innocent, S. Touil, A. Deratani, P. Seta, Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using bcyclo dextrin-containing PVA membrane. Mater. Sci. Eng. C 26, 222–226 (2006)

    Article  CAS  Google Scholar 

  13. J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, A graphene oxide-based electro chemical sensor for sensitive determination of 4-nitrophenol. J. Hazard. Mater. 201–202, 250–259 (2012)

    Article  CAS  Google Scholar 

  14. Y. Xu, Y. Wang, Y. Ding, L. Luo, X. Liu, Y. Zhang, Determination of p-nitro phenol on carbon paste electrode modified with a nanoscaled compound oxide Mg (Ni) FeO. J. Appl. Electrochem. 43, 679–687 (2013)

    Article  CAS  Google Scholar 

  15. Y.L. Yang, B. Unnikrishnan, S.M. Chen, Amperometric determination of 4- nitro phenol at multi-walled carbon nanotube-poly(diphenylamine) composite modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 3902–3912 (2011)

    CAS  Google Scholar 

  16. H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochim. Acta 55, 7102–7108 (2010)

    Article  CAS  Google Scholar 

  17. L.Q. Luo, X.L. Zou, Y.P. Ding, Q.S. Wu, Derivative voltammetric direct simultane- ous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators B 135, 61–65 (2008)

    Article  CAS  Google Scholar 

  18. L. Chu, L. Han, X. Zhang, Electrochemical simultaneous determination of nitro phenol isomers at nano-gold modified glassy carbon electrode. J. Appl. Electrochem. 41(6), 687–694 (2011)

    Article  CAS  Google Scholar 

  19. I.G. Casella, M. Contursi, The electrochemical reduction of nitrophenols on silver globular particles electrodeposited under pulsed potential conditions. J Electron. Chem. Soc. 154, D697–D702 (2007)

    Article  CAS  Google Scholar 

  20. W. Sun, M.X. Yang, Q. Jiang, K. Jiao, Direct electrocatalytic reduction of p-nitro phenol at room temperature ionic liquid modified electrode. Chin. Chem. Lett. 19, 1156–1158 (2008)

    Article  CAS  Google Scholar 

  21. X. Xie, Y. Li, Z. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239), 746–749 (2009)

    Article  CAS  Google Scholar 

  22. I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011)

    Article  CAS  Google Scholar 

  23. X.Q. Liu, J. Iocozzia, Y. Wang, X. Cui, Y.H. Chen, S.Q. Zhao, Z. Li, Z.Q. Lin, Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017)

    Article  CAS  Google Scholar 

  24. N.R. Elezovic, B.M. Babic, V.R. Radmilovic, S.L. Gojkovic, N.V. Krstajic, L.M. Vracar, Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J. Power Sources 175, 250–255 (2008)

    Article  CAS  Google Scholar 

  25. Y. Bai, J. Wu, J. Xi, J. Wang, W. Zhu, L. Chen, X. Qiu, Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem. Commun. 7, 1087–1090 (2005)

    Article  CAS  Google Scholar 

  26. L. Feng, J. Yang, Y. Hu, J. Zhu, C. Liu, W. Xing, Electrocatalytic properties of Pd CeOx/C anodic catalyst for formic acid electrooxidation. Int. J. Hydrog Energy 37, 4812–4818 (2012)

    Article  CAS  Google Scholar 

  27. C. Zhang, F. Meng, L. Wang, M. Zhang, Z. Ding, Morphology-selective synthesis method of gear-like CeO2 microstructures and their optical properties. Mater. Lett. 130, 202–205 (2014)

    Article  CAS  Google Scholar 

  28. C.R. Li, Q.T. Sun, N.P. Lu, B.Y. Chen, W.J. Dong, A facile route for the fabrication of CeO2 nanosheets via controlling the morphology of CeOHCO3 precursors. J. Cryst. Growth 343, 95–100 (2012)

    Article  CAS  Google Scholar 

  29. R. Rao, M. Yang, Q. Ling, Q. Zhang, H. Liu, A. Zhang, W. Chen, Mesoporous CeO2 nanobelts synthesized by a facile hydrothermal route via controlling cationic type and concentration of alkali. Microporous Mesoporous Mater. 169, 81–87 (2013)

    Article  CAS  Google Scholar 

  30. F. Niu, D. Zhang, L. Shi, X. He, H. Li, H. Mai, T. Yan, Facile synthesis, characteri- zation and low-temperature catalytic performance of Au/CeO2 nanorods. Mater. Lett. 63, 2132–2135 (2009)

    Article  CAS  Google Scholar 

  31. K. Singh, A.A. Ibrahim, A. Umar, A. Kumar, G.R. Chaudhary, S. Singh, S.K. Mehta, Synthesis of CeO2–ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. Sens. Actuators B 202, 1044–1050 (2014)

    Article  CAS  Google Scholar 

  32. C.R. Michel, A.H.M. Preciado, CO sensor based on thick films of 3D hierarchical CeO2 architectures. Sens. Actuators B 197, 177–184 (2014)

    Article  CAS  Google Scholar 

  33. N.F. Hamedani, A.R. Mahjoub, A.A. khodadadi, Y. Mortazavi, CeO2 doped ZnO flower-like nanostructure sensor selective to ethanol in presence of CO and CH4. Sens. Actuators B 169, 67–73 (2012)

    Article  CAS  Google Scholar 

  34. S.K. Jha, C.N. Kumar, R.P. Raj, N.S. Jha, S. Mohan, Synthesis of 3D porous CeO2/reduced graphene oxide xerogel composite and low level detection of H2O2. Electrochim. Acta 120, 308–313 (2014)

    Article  CAS  Google Scholar 

  35. A. Rahim, R.A. Hameed, M. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sources 134, 160–169 (2004)

    Article  CAS  Google Scholar 

  36. C. Fan, D. Piron, A. Sleb, P. Paradis, Study of electrodeposited nickel molybdenum, nickel tungsten, cobalt molybdenum, and cobalt tungsten as hydrogen electr odes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382–387 (1994)

    Article  CAS  Google Scholar 

  37. M. Ranjbar, M.A. Taher, A. Sam, Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium. J. Mater. Sci.: Mater. Electron. 27(2), 1449–1456 (2016)

    CAS  Google Scholar 

  38. M. Ranjbar, M.S. Niasari, S.M.H. Mashkani, K.V. Rao, Solvothermal synthesis and characterization of hollow sphere-like ZnS/ZnAl2S4 nanocomposites. J. Inorg. Organomet. Polym. Mater. 22(5), 1122–1127 (2012)

    Article  CAS  Google Scholar 

  39. P. Rajaei, M. Ranjbar, Synthesis and characterization of zinc oxide nano structures by green capping agent and its photocatalytic degradation of methylene blue (MB). J. Mater. Sci.: Mater. Electron. 27(2), 1708–1712 (2016)

    CAS  Google Scholar 

  40. M. Ranjbar, M.A. Taher, A. Sam, NiO nanostructures: novel solvent-less solid-state synthesis, characterization and MB photocatalytic degradation. J. Mater. Sci.: Mater. Electron. 26(10), 8029–8034 (2015)

    CAS  Google Scholar 

  41. F. Sedighi, M.E. Zare, A.S. Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29(16), 13737–13745 (2018)

    CAS  Google Scholar 

  42. M.R. Nasrabadi, M. Behpour, A.S. Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(11), 11691–11697 (2016)

    Google Scholar 

  43. A.S. Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M.R. Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)

    Article  CAS  Google Scholar 

  44. H. Naderi, H. Sobati, A.S. Nasab, M.R. Nasrabadi, M.E. Arani, M.R. Ganjali, H. Ehrlich, Synthesis and supercapacitor application of cerium tungstate nano structure. Chem. Select 4(10), 2862–2867 (2019)

    CAS  Google Scholar 

  45. S.M. Pourmortazavi, M.R. Nasrabadi, A.S. Nasab, M.S. Karimi, M.R. Ganjali, S. Mirsadeghi, Electrochemical synthesis of copper carbonates nano particles through experimental design and the subsequent thermal decomposition to copper oxide. Mater. Res. Express. 6(4), 045065 (2019)

    Article  CAS  Google Scholar 

  46. A.S. Nasab, M.R. Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Sonochemical synthesis of terbium tungstate for develo ping high power supercapacitors with enhanced energy densities. Ultrason. Sonochem 45, 189–196 (2018)

    Article  CAS  Google Scholar 

  47. D. Patil, N.Q. Dung, H. Jung, S.Y. Ahn, D.M. Jang, D. Kim, Enzymatic glucose bio sensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectron. 31, 176–181 (2012)

    Article  CAS  Google Scholar 

  48. H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang, Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high performance electrodes for Super capacitors. Nanoscale Res. Lett. 9, 424 (2014)

    Article  CAS  Google Scholar 

  49. R. Wahab, A. Umar, S. Dwivedi, K.J. Tomar, H.S. Shin, I.H. Hwang, ZnO nano particles: cytological effect on chick fibroblast cells and antimicrobial activities towards Escherichia coli and Bacillus subtilis. Sci. Adv. Mater. 5, 1571–1580 (2013)

    Article  CAS  Google Scholar 

  50. L. Chen, L. Li, G. Li, Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J. Alloys Compd. 464, 532–536 (2008)

    Article  CAS  Google Scholar 

  51. E. Kumar, P. Selvarajan, K. Balasubramanian, Preparation and studies of cerium dioxide (CeO2) nanoparticles by microwave-assisted solution method. Recent Res. Sci. Technol. 2, 37–41 (2010)

    Google Scholar 

  52. Y. Li, X. Liu, J. Li, Preparation and characterization of CeO2 doped ZnO nano-tubes fluorescent composite. J. Rare Earth 28, 571–575 (2010)

    Article  CAS  Google Scholar 

  53. T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Magnetic and electro chemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci. 8(42), 5–430 (2006)

    Google Scholar 

  54. X.M. Ni, Q.B. Zhao, B.B. Li, J. Cheng, H.G. Zheng, Interconnected β-Ni(OH)2 sheets and their morphology-retained transformation into mesostructured Ni. Solid State Commun. 137, 585–588 (2006)

    Article  CAS  Google Scholar 

  55. X. Li, J. Li, D. Huo, Z. Xiu, X. Sun, Facile synthesis under near-atmospheric conditions and physicochemical properties of hairy CeO2 nanocrystallines. J. Phys. Chem. C 113, 1806–1811 (2009)

    Article  CAS  Google Scholar 

  56. S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity (Academic Press, London, 1982)

    Google Scholar 

  57. S. Lowell, J.E. Shields, Powder surface area and porosity (Chapman and Hall, London, 1984)

    Book  Google Scholar 

  58. G. Wang, Y. Bao, Y. Tian, J. Xia, D. Cao, Electrocatalytic activity of perovskite La1-xSrx MnO3 towards hydrogen peroxide reduction in alkaline medium. J. Power Sources 195, 6463–6467 (2010)

    Article  CAS  Google Scholar 

  59. N.Q. Dung, D. Patil, H. Jung, J. Kim, D. Kim, NiO-decorated single-walled carbon nanotubes for high-performance nonenzymatic glucose sensing. Sens. Actuators B 183, 381–387 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naushad Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, N., Alam, M., Wahab, R. et al. Synthesis of NiO–CeO2 nanocomposite for electrochemical sensing of perilous 4-nitrophenol. J Mater Sci: Mater Electron 30, 17643–17653 (2019). https://doi.org/10.1007/s10854-019-02113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02113-2

Navigation