Skip to main content
Log in

Influence of surface oxygen vacancies on the LPG sensing response and the gas selectivity of Nd-doped SnO2 nanoparticulate thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured 0.1 to 6 wt% of Neodymium (Nd) doped SnO2 thin films are deposited by nebulizer assisted spray pyrolysis process to investigate the gas sensing ability. X-ray diffraction analyses suggest that moderate addition of Nd facilitates the crystalline growth of films leading to lattice strain and substantial increase of the oxygen vacancies, to get modified the charge transport through the grains. The 3 wt% Nd doped films grow in (301), (200) and (110) preferred orientation, which is supported by Transmission Electron Micrograph. The Field Emission Scanning Micrographs reveal changes in film morphology comprising of differently sized agglomerated particles. The AFM images present the possibility of regulation of surface roughness via Nd doping. The 3 wt% Nd doped film shows maximum response of 99.8% in 500 ppm of LPG with remarkable response and recovery times of 5 s and 10 s respectively, at an operating temperature of 350 °C. The LPG response persists with a value of 63%, even at a reduced operating temperature of 250 °C. The Nd doped films also show acceptable selectivity in presence of Methane, CO2, NO2 and Ammonia, in the studied concentration. The Raman and Photoluminescence spectra show that the ratio of in-plane to bridging oxygen vacancies is highest for 3 wt% Nd doped sample, influencing the gas sensing action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Shigemori, Gas Sensors Status and Future Trends for Safety Applications, in The 14th International Meeting on Chemical Sensors (IMCS) Proceedings (Nuremberg, Germany, 2012), pp. 49–51. https://doi.org/10.5162/imcs2012/pt1

  2. B. Thomas, B. Skariah, Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloys Compd. 625, 231–240 (2015)

    Article  Google Scholar 

  3. E.A. Morais, L.V.A. Scalvi, V. Geraldo, R.M.F. Scalvi, S.J.L. Ribeiro, C.V. Santilli, S.H. Pulcinelli, Electro-optical properties of Er-doped SnO2 thin films. J. Eur. Ceram. Soc. 24, 1857–1860 (2004)

    Article  Google Scholar 

  4. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258, 3255–3259 (2012)

    Article  Google Scholar 

  5. E.A. Morais, L.V.A. Scalvi, A. Tabata, J.B.B. De Oliveira, S.J.L. Ribeiro, Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel. J. Mater. Sci. 43, 345–349 (2008)

    Article  Google Scholar 

  6. C. Bouzidi, H. Elhouichet, A. Moadhen, Yb3+ effect on the spectroscopic properties of Er–Yb codoped SnO2 thin films. J. Lumin. 131, 2630–2635 (2011)

    Article  Google Scholar 

  7. F. Hild, L. Eichenberger, A. Bouché, X. Devaux, M. Stoffel, H. Rinnert, M. Vergnat, Structural and photoluminescence properties of evaporated SnO2 thin films doped with rare earths. Energy Procedia 84, 141–148 (2015)

    Article  Google Scholar 

  8. H. Rinnert, P. Miska, M. Vergnat, G. Schmerber, S. Colis, A. Dinia, D. Muller, G. Ferblantier, A. Slaoui, Photoluminescence of Nd-doped SnO2 thin films. Appl. Phys. Lett. 100, 101908 (2012)

    Article  Google Scholar 

  9. K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, A. Slaoui, Optical and structural properties of Nd doped SnO2 powder fabricated by the sol–gel method. J. Mater. Chem. C 2, 8235–8243 (2014)

    Article  Google Scholar 

  10. G. Turgut, E. Sonmez, S. Duman, Evaluation of an Nd doping effect on characteristic properties of tin oxide. Mater. Sci. Semicond. Process. 30, 233–241 (2015)

    Article  Google Scholar 

  11. K.D. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2010)

    Article  Google Scholar 

  12. W. Shide, L. Chao, W. Wei, W. Huanxin, S. Yanliang, Z. Youqi, L. Lingzhen, Nd-doped SnO2: characterization and its gas sensing property. J. Rare Earths 28, 171–173 (2010)

    Google Scholar 

  13. G. Qin, F. Gao, Q. Jiang, Y. Li, Y. Liu, L. Luo, K. Zhao, H. Zhao, Well-aligned Nd-doped SnO2 nanorods layered array: preparation, characterization and enhanced alcohol-gas sensing performance. Phys. Chem. Chem. Phys. 18, 5537–5549 (2016)

    Article  Google Scholar 

  14. S. Deepa, K. PrasannaKumari, B. Thomas, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram. Int. 43, 17128–17141 (2017)

    Article  Google Scholar 

  15. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  16. M. Govender, D.E. Motaung, B.W. Mwakikunga, S. Umapathy, S. Sil, A.K. Prasad, A.G.J. Machatine, H.W. Kunert, Operating temperature effect in WO3 films for gas sensing. Sensors IEEE 2013, 1–4 (2013). https://doi.org/10.1109/icsens.2013.6688192

    Google Scholar 

  17. D. Chandran, L.S. Nair, S. Balachandran, K.R. Babu, M. Deepa, Band gap narrowing and photocatalytic studies of Nd3+ ion-doped SnO2 nanoparticles using solar energy. Bull. Mater. Sci. 39, 27–33 (2016)

    Article  Google Scholar 

  18. Y.-C. Liang, C.-M. Lee, Y.-J. Lo, Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method. RSC Adv. 7, 4724–4734 (2017)

    Article  Google Scholar 

  19. N.V. Long, T. Teranishi, Y. Yang, C.M. Thi, Y. Cao, M. Nogami, Iron oxide nanoparticles for next generation gas sensors. Int J. Metall. Mater. Eng. 1, 119 (2015)

    Article  Google Scholar 

  20. J. Biener, A. Wittstock, T.F. Baumann, J. Weissmüller, M. Bäumer, A.V. Hamza, Surface chemistry in nanoscale materials (review). Materials 2, 2404–2428 (2009)

    Article  Google Scholar 

  21. U. Diebold, Structure and properties of TiO2 surfaces: a brief review. Appl. Phys. A 76, 681–687 (2003). https://doi.org/10.1007/s00339-002-2004-5

    Article  Google Scholar 

  22. Boben Thomas, S. Deepa, K. PrasannaKumari, Influence of surface defects and preferential orientation in nanostructured Ce-doped SnO2 thin films by nebulizer spray deposition for lowering the LPG sensing temperature to 150 °C. Ionics 25, 809–826 (2019)

    Article  Google Scholar 

  23. J. Kaur, S.C. Roy, M.C. Bhatnagar, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature. Sens. Actuators, B 123, 1090–1095 (2007)

    Article  Google Scholar 

  24. L. Schmidt-Mende, J.L.M. Driscoll, ZnO – nanostructures, defects and devices. Mater. Today 10, 40–48 (2007)

    Article  Google Scholar 

  25. M. Chikamatsu, S. Nagamatsu, T. Taima, Y. Yoshida, N. Sakai, H. Yokokawa, K. Saito, K. Yase, C 60 thin-film transistors with low work-function metal electrodes. Appl. Phys. Lett. 85, 2396–2398 (2004)

    Article  Google Scholar 

  26. J.F. Geiger, K.D. Schierbaum, W. Göpel, Surface spectroscopic studies on Pd-doped SnO2. Vacuum 41, 1629–1632 (1990)

    Article  Google Scholar 

  27. R. Dhahri, M. Hjiri, L. El-Mir, H. Alamri, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. 2, 34–40 (2017)

    Article  Google Scholar 

  28. K. Fukui, M. Nakane, CO gas sensor based on Au-La203 loaded SnO2 ceramic. Sens. Actuators, B 25, 486–490 (1995)

    Article  Google Scholar 

  29. J.K.G. Dhont, W.J. Briels, Single-particle thermal diffusion of charged colloids: double-layer theory in a temperature gradient. Eur. Phys. J. E 25, 61–76 (2008)

    Article  Google Scholar 

  30. J. Zhao, Q. Huang, C. de la Cruz, S. Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, N.L. Wang, P. Dai, Structural and magnetic phase diagram of CeFeAsO1-xFx and its relation to high-temperature superconductivity. Nat. Mater. 7, 953–959 (2008)

    Article  Google Scholar 

  31. M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators, B 115, 128–133 (2006)

    Article  Google Scholar 

  32. C. Yu, L. Wang, B. Huang, In situ DRIFTS study of the low temperature selective catalytic reduction of NO with NH3 over MnOx supported on multi-walled carbon nanotubes catalysts. Aerosol Air Qual. Res. 15, 1017–1027 (2015)

    Article  Google Scholar 

  33. X. Guo, A. Hoffman, J.T. Yates, Adsorption kinetics and isotopic equilibration of oxygen adsorbed on the Pd(111) surface. J. Chem. Phys. 90, 5787–5793 (1989)

    Article  Google Scholar 

  34. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens. Actuators, B 129, 666–670 (2008)

    Article  Google Scholar 

  35. S. Ahlers, G. Mȕller, T. Doll, A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens. Actuators, B 107, 587–599 (2005)

    Article  Google Scholar 

  36. N. Khedmi, M.B. Rabeh, M. Kanzari, Thickness dependent structural and optical properties of vacuum evaporated CuIn5S8 thin films. Energy Procedia 44, 61–68 (2014)

    Article  Google Scholar 

  37. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London, 1974)

    Book  Google Scholar 

  38. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping. J. Alloys Compd. 666, 392–405 (2016)

    Article  Google Scholar 

  39. N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006)

    Article  Google Scholar 

  40. Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.-H. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, e30–e36 (2012)

    Article  Google Scholar 

  41. C.H. Tan, S.T. Tan, H.B. Lee, C.C. Yap, M. Yahaya, Growth concentration effect on oxygen vacancy induced band gap narrowing and optical CO gas sensing properties of ZnO nanorods. AIP Conf. Proc. 1784, 040021–040025 (2016)

    Article  Google Scholar 

  42. L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, P.K. Chu, Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J. Raman Spectrosc. 43, 1423–1426 (2012)

    Article  Google Scholar 

  43. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D 33, 912–916 (2000)

    Article  Google Scholar 

  44. A. Diéguez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550–1557 (2001)

    Article  Google Scholar 

  45. J.L. Gole, A.V. Iretskii, M.G. White, A. Jacob, W.B. Carter, S.M. Prokes, A.S. Erickson, Suggested oxidation state dependence for the activity of submicron structures prepared from tin/tin oxide mixtures. Chem. Mater. 16, 5473–5481 (2004)

    Article  Google Scholar 

  46. W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu, C.L. Zheng, Preparation of smooth single-crystal Mn3O4 nanowires. Adv. Mater. 14, 837–840 (2002)

    Article  Google Scholar 

  47. S. Luo, P.K. Chu, W. Liu, M. Zhang, C. Lin, Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambient. Appl. Phys. Lett. 88, 183112–183113 (2006)

    Article  Google Scholar 

  48. K. Bouras, G. Schmerber, H. Rinnert, D. Aureau, H. Park, G. Ferblantier, S. Colis, T. Fix, C. Park, W.K. Kim, A. Dinia, A. Slaoui, Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Solar Energy Mater. Solar Cells 145, 134–141 (2016)

    Article  Google Scholar 

  49. J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films. Acta Mater. 57, 278–285 (2009)

    Article  Google Scholar 

  50. O. Oprea, O.R. Vasile, G. Voicu, E. Andronescu, The influence of the thermal treatment on luminescence properties of ZnO. Digest J. Nanomater. Biostruct. 8, 747–756 (2013)

    Google Scholar 

  51. M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, J.R. Morante, The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J. Phys. Chem. C 112, 19540–19546 (2008)

    Article  Google Scholar 

  52. X.D. Pu, W.Z. Shen, Z.Q. Zhang, H. Ogawa, Q.X. Guo, Growth and depth dependence of visible luminescence in wurtzite InN epilayers. Appl. Phys. Lett. 88, 151904 (2006)

    Article  Google Scholar 

  53. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)

    Article  Google Scholar 

  54. S. Rani, S.C. Roy, M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films. Sens. Actuators, B 122, 204–210 (2007)

    Article  Google Scholar 

  55. D.H. Zhang, Q.P. Wang, Z.Y. Xue, Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica 52, 1484–1487 (2003)

    Google Scholar 

  56. S. Wang, Y. Li, J. Bai, Q. Yang, Y. Song, C. Zhang, Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene. Bull. Mater. Sci. 32, 487–491 (2009)

    Article  Google Scholar 

  57. J. Hu, Y. Bando, Q. Liu, D. Golberg, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 13, 493–496 (2003)

    Article  Google Scholar 

  58. C. Malagù, A. Giberti, S. Morandi, C.M. Aldao, Electrical and spectroscopic analysis in nanostructured SnO2: “Long-term” resistance drift is due to in-diffusion. J. Appl. Phys. 110, 093711–093715 (2011)

    Article  Google Scholar 

  59. S. Deepa, K. PrasannaKumari, B. Thomas, Influence of lattice strain and dislocations on the LPG sensing performance of praseodymium doped SnO2 nanostructured thin films. IJRASET 5, 1054–1059 (2017). https://doi.org/10.22214/ijraset.2017.9152

    Google Scholar 

  60. Z. Wang, T. Zhang, T. Han, T. Fei, S. Liu, G. Lu, Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuators, B 266, 812–822 (2018)

    Article  Google Scholar 

  61. D. Haridas, A. Chowdhuri, K. Sreenivas, V. Gupta, Enhanced room temperature response of SnO2 thin film sensor loaded with Pt catalyst clusters under UV radiation for LPG. Sens. Actuators, B 153, 152–157 (2011)

    Article  Google Scholar 

  62. B. Yuliarto, G. Gumilar, N.L.W. Septiani, SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism (review). Adv. Mater. Sci. Eng. 2015, 694823 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author SD is thankful to UGC for the Teacher Fellowship (UGC TF CODE: KLMG038 TF 06 dated 04/09/2013) and KP is grateful to KCSTE (822/DIR/2014-15/KSCSTE dated 09.02.2015) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boben Thomas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, S., Thomas, B. & PrasannaKumari, K. Influence of surface oxygen vacancies on the LPG sensing response and the gas selectivity of Nd-doped SnO2 nanoparticulate thin films. J Mater Sci: Mater Electron 30, 16579–16595 (2019). https://doi.org/10.1007/s10854-019-02037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02037-x

Navigation