Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16554–16561 | Cite as

A cost-effective and facile approach for realization of black silicon nanostructures on flexible substrate

  • Ashish KumarEmail author
  • Jitesh Agrawal
  • Ashok Kumar Sharma
  • Vipul Singh
  • Ajay Agarwal


In this paper, we report a cost effective and facile approach to produce uniform nanostructural black silicon over large-area by metal assist chemical etching followed by its transfer over pressure sensitive flexible substrate. Structural and optical properties of black silicon over flexible substrate were investigated. Field emission scanning electronic microscope (FESEM) reveals textured surface and dense morphology of silicon nanostructures; that appeared to be black. An intense and broadband UV and Visible photoluminescence spectra from these nanostructures was observed and suggested the optically active nature of black silicon. Broadening and asymmetric shifting of Raman line shape, corresponding to black silicon, confirmed quantum confinement of phonon. The crystal sizes of silicon (Si) nanostructures calculated using frequency shift in Raman spectra analytical model were 3.4 nm to 4.7 nm. Significant reduction of reflection below (1%) over the wide UV–Vis spectrum was recorded due to presence of textured surface as observed by FESEM. The present work aids our understanding of tuning the optical properties of black silicon and its’ realization on flexible substrate could be beneficial for flexible electronics including bio-sensing and optoelectronics devices. More interestingly low reflectance of black silicon could pave the way for realization of highly efficient flexible solar cells.



Authors are thankful to Director, CSIR-CEERI support to carry out this research work. Authors are also grateful to technical staff of CSIR-CEERI Pilani for their help during the experiment. Dr. Kulwanti Singh, Department of ECE, Manipal University Jaipur (MUJ) is also acknowledged for his valuable suggestions and discussion. Moreover J. Agrawal acknowledges the support from SIC facility of IIT Indore.


  1. 1.
    A. Kumar, T. Dixit, I.A. Palani, D. Nakamura, M. Higashihata, V. Singh, Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor. Physica E 93, 97–104 (2017)CrossRefGoogle Scholar
  2. 2.
    L.A. Osminkina, K.A. Gonchar, V.S. Marshov, K.V. Bunkov, D.V. Petrov, L.A. Golovan, V.Y. Timoshenko, Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale Res. Lett. 7(1), 524 (2012)CrossRefGoogle Scholar
  3. 3.
    V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21(25–26), 2681–2702 (2009)CrossRefGoogle Scholar
  4. 4.
    V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A.K. Shukla, R. Kumar, Silicon nanowires prepared by metal induced etching (MIE): good field emitters. RSC Adv. 4, 57799 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Wang, A.L. Rogach, Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem. Mater. 26(1), 123–133 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23(2), 285–308 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Namdari, H. Daraee, A. Eatemadi, Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res. Lett. 11(1), 406 (2016)CrossRefGoogle Scholar
  8. 8.
    H. Han, Z. Huang, W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3), 271–304 (2014)CrossRefGoogle Scholar
  9. 9.
    E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Nanowire solar cells. Annu. Rev. Mater. Res. 41, 269–295 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)CrossRefGoogle Scholar
  11. 11.
    P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z.M. Wang, Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11(6), 704–737 (2016)CrossRefGoogle Scholar
  12. 12.
    X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D.J. Fray, Black silicon: fabrication methods, properties and solar energy applications. Energy Environ. Sci. 7(10), 3223–3263 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J.O.A.N. Sprafke, J. Ziegler, M. Zilk Ralf, B. Wehrspohn, Black silicon photovoltaics. Adv. Opt. Mater. 3(2), 147–164 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Toor, J.B. Miller, L.M. Davidson, W. Duan, M.P. Jura, J.J. Yim, J. Forziat, M.R. Black, Metal assisted catalyzed etched (MACE) black Si: optics and device physics. Nanoscale 8(34), 15448–15466 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5(2), 115 (1995)CrossRefGoogle Scholar
  16. 16.
    W. Chern, K. Hsu, I.S. Chun, B.P.D. Azeredo, N. Ahmed, K.H. Kim, J. Zuo, N. Fang, P. Ferreira, X. Li, Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. Nano Lett. 10(5), 1582–1588 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72(15), 1835–1837 (1998)CrossRefGoogle Scholar
  18. 18.
    T. Syau, B.J. Baliga, R.W. Hamaker, Reactive ion etching of silicon trenches using SF 6/O 2 gas mixtures. J. Electrochem. Soc. 138(10), 3076–3081 (1991)CrossRefGoogle Scholar
  19. 19.
    L. Wu, S. Li, W. He, D. Teng, K. Wang, C. Ye, Automatic release of silicon nanowire arrays with a high integrity for flexible electronic devices. Sci. Rep. 4, 3940 (2014)CrossRefGoogle Scholar
  20. 20.
    C.H. Lee, D.R. Kim, X. Zheng, Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. Proc. Natl. Acad. Sci. 107(22), 9950–9955 (2010)CrossRefGoogle Scholar
  21. 21.
    R. Dahiya, G. Gottardi, N. Laidani, PDMS residues-free micro/macrostructures on flexible substrates. Microelectron. Eng. 136, 57–62 (2015)CrossRefGoogle Scholar
  22. 22.
    A.B. Roy, A. Dhar, M. Choudhuri, S. Das, S.M. Hossain, A. Kundu, Black silicon solar cell: analysis optimization and evolution towards a thinner and flexible future. Nanotechnology 27(30), 305302 (2016)CrossRefGoogle Scholar
  23. 23.
    G. Sahu, H.P. Lenka, D.P. Mahapatra, B. Rout, F.D. McDaniel, Narrow band UV emission from direct bandgap Si nanoclusters embedded in bulk Si. J. Phys. 22(7), 072203 (2010)Google Scholar
  24. 24.
    N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H.S. Leipner, P. Werner, Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. J. Phys. Chem. C 116(24), 13446–13451 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Qu, H. Zhou, X. Duan, Porous silicon nanowires. Nanoscale 3(10), 4060–4068 (2011)CrossRefGoogle Scholar
  26. 26.
    S.K. Saxena, V. Kumar, H.M. Rai, G. Sahu, R. Late, K. Saxena, A.K. Shukla, P.R. Sagde, Study of porous silicon prepared using metal-induced etching (MIE): a comparison with laser-induced etching (LIE). Silicon 9(4), 483–488 (2017)CrossRefGoogle Scholar
  27. 27.
    K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K.B. Crozier, Multicolored vertical silicon nanowires. Nano Lett. 11(4), 1851–1856 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Lajvardi, H. Eshghi, M.E. Ghazi, M. Izadifard, A. Goodarzi, Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching. Mater. Sci. Semicond. Process. 40, 556–563 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Kumar, G. Sahu, S.K. Saxena, H.M. Rai, P.R. Sagdeo, Qualitative evolution of asymmetric Raman line-shape for nanostructures. Silicon 6(2), 117–121 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Raman shifts in Si nanocrystals. Appl. Phys. Lett. 69(2), 200–202 (1996)CrossRefGoogle Scholar
  31. 31.
    L. Lin, X. Sun, R. Tao, J. Feng, Z. Zhang, The synthesis and photoluminescence properties of selenium-treated porous silicon nanowire arrays. Nanotechnology 22(7), 075203 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano Biosensors Group, CSIR-Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.Molecular and Nanoelectronics Research Group (MNRG), Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations