Abstract
In this paper, we have investigated the effect of Cr3+ substitution on the crystal structure, microstructure, dielectric and magnetic behavior of the morphotropic phase boundary (MPB) composition of the multiferroic ceramic 0.675BiFe(1−x)CrxO3–0.325PbTiO3 (x = 0, 0.02 and 0.05). The average grain size of the specimens increased from ~ 150 nm for x = 0 to 470 nm for x = 0.05. Rietveld refinement analysis of the X-Ray powder diffraction patterns confirmed the coexistence of multiphase i.e. monoclinic Cc and tetragonal P4 mm polymorphs for all the compositions. The system exhibits weak ferromagnetism for x = 0.05. We estimated the magnetoelectric interaction constant (γ ~ 0.31) for x = 0.05 by Ginzburg–Landau theory. The value of magnetoelectric coupling coefficient (\(\alpha_{ME}\)) is found to be 0.054 mV/cm-Oe, 0.073 mV/cm-Oe, 0.133 mV/cm-Oe for x = 0, 00.02 and 0.05, respectively. High temperature dielectric data also reveals that Curie temperature decreases with increasing Cr3+ concentration.
This is a preview of subscription content, access via your institution.










References
W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)
S. Fusil, V. Garcia, A. Barthelemy, M. Bibes, Annu. Rev. Mater. Res. 44, 91–116 (2014)
M. Bibes, A. Barthelemy, Nat. Mater. 7, 425–426 (2008)
S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)
T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93–110 (2013)
N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, Ph Ghosez, Nat. Commun. 6, 6677 (2015)
J.F. Scott, J. Mater. Chem. 22, 4567–4574 (2012)
P. Ravindran, R. Vidaya, O. Eriksson, H. Fjellvag, Adv. Mater. 20, 1353–1356 (2008)
G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)
D. Rahmedov, D. Wang, J. Iniguez, L. Bellaiche, Phys. Rev. Lett. 109, 037207 (2012)
S. Chauhan, M. Kumara, S. Chhokera, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525–529 (2012)
M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M. Garcia-Hernandez, M.A. Garcia, M. Villegas, A.C. Caballero, Chem. Mater. 25(9), 1533–1541 (2013)
V.A. Reddy, N.P. Pathak, R. Nath, Solid State Commun. 171, 40–45 (2013)
P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, J. Phys. 21, 036001 (2009)
H. Deng, H. Deng, P. Yang, J. Chu, J. Mater. Sci. 23, 1215–1218 (2012)
F. Chang, N. Zhang, F. Yang, S. Wang, G. Song, J. Phys. D 40, 24 (2007)
J.K. Kim, S.S. Kim, W.-J. Kim, Appl. Phys. Lett. 88(132901), 1–3 (2006)
S.M. Wu et al., Nat. Mater. 9, 756–761 (2010)
D. Sando, A. Barthelemy, M. Bibes, J. Phys. 26, 473201 (2014)
A. Kumar et al., J. Phys. 21, 382204 (2009)
J.F. Scott, NPG Asia Mater. 5(e72), 1–11 (2013)
D. Evans et al., Nat. Commun. 4, 1534 (2013)
L. Keeney et al., J. Am. Ceram. Soc. 96, 2339–2357 (2013)
K. Oka et al., Int. Ed. 51, 7977–7980 (2012)
R. Guo et al., Phys. Rev. Lett. 84, 5423 (2000)
D. Damjanovic, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq Control 56, 1574–1585 (2009)
J.C. Wojdel, J. Iniguez, Phys. Rev. Lett. 105(3), 037208 (2010)
W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401 (2008)
T.P. Comyn et al., Appl. Phys. Lett. 93, 232901 (2008)
M. Yashima, K. Omoto, J. Chen, H. Kato, X. Xing, Chem. Mater. 23, 3135 (2011)
V. Kothai, A. Senyshynand, R. Ranjan, J. Appl. Phys. 113(8), 084102 (2013)
Carvajal RJ, FullPROF A (2011) Rietveld refinement and pattern matching analysis program laboratories. Leon Brillouin [CEA-CNRS], France
D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)
S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)
Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li, D. Viehland, Phys. Rev. Lett. 91, 197601 (2003)
H. Amorin et al., J. Appl. Phys. 115, 104104 (2014)
S. Bhattacharje, K. Taji, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Phys. Rev. B 84, 104116 (2011)
S.S. Arafat, S. Ibrahim, Mater. Sci. Appl. 8, 716–725 (2017)
V.F. Freitas et al., J. Am. Ceram. Soc. 94, 754–758 (2011)
J.B. Li, G.H. Rao, J.K. Liang, Y.H. Liu, J. Luo, J.R. Chen, Appl. Phys. Lett. 90, 162513 (2007)
C.A. Randall, A.S. Bhalla, Jpn. J. Appl. Phys. 29(2R), 327 (1990)
Chikazumi S, Ohta K, Adachi K, Tsuya N, Ishikawa Y (1975) Asakura-syoten, Tokyo (in Japanese), p 63
S. Layek, S. Saha, H.C. Verma, AIP Adv. 3, 032140 (2013)
K.C. Verma, J. Shah, R.K. Kotnala, J. Nanosci. Nanotechnol. 15, 1587–1590 (2015)
A. Kumar, K.L. Yadav, Mater. Sci. Eng. 176, 227–230 (2011)
M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaran, Bull. Mater. Sci. 21, 251–255 (1998)
M. Kumar, K.L. Yadav, J. Phys. Chem. Solids 68, 1791–1795 (2007)
R. Grossinger, G.V. Duong, R.S. Turtelli, J. Magn. Magn. Mater. 320, 1972–1977 (2008)
Acknowledgements
Sanjeev Kumar is thankful to Punjab Engineering College (Deemed to be University), Chandigarh for providing financial assistance in the form of RIPA project. Sanjeev Kumar and Naveen Kumar are thankful to NRC-M (Materials Engineering, IISc, Bengaluru) for carrying out characterization work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kumar, N., Narayan, B., Mehrotra, T. et al. Influence of Cr3+ doping on multiferroic properties in the morphotropic phase boundary compositions of BiFeO3–PbTiO3 system. J Mater Sci: Mater Electron 30, 16539–16547 (2019). https://doi.org/10.1007/s10854-019-02030-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-019-02030-4