Investigation on electrical conductivity and surface distribution of work function of C12A7 electride

Abstract

In this work, a polycrystalline C12A7 electride target was prepared by one-step sintering method using a graphite crucible. X-rays diffraction confirmed the presence of the C12A7 phase. In the meanwhile, a carbon phase was founded in the target and this situation was never reported before. It can be considered that there is a little carbon left in the C12A7 crystal. The electrical and emission properties of carbon doped C12A7 electride were explored. In terms of the electrical characteristics, the electrical resistance measured by a four-pin resistance meter at 300 K is relatively large, which is similar to semiconductors, indicating a low-level electron concentration of about 1.0 × 1018 cm−3. For the emission performance, a Scanning Kelvin Probe was used to measure the surface distribution of work function. The result shows that the surface work function is relatively stable with a floating about ± 0.03 eV of the average value 3.7 eV. The work function is also smaller, although it is higher than other pure C12A7 electrides, making it has a great prospect in optoelectronics devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    T. Kamiya, S. Aiba, M. Miyakawa et al., Chem. Mater. 17, 6311 (2005)

    Article  Google Scholar 

  2. 2.

    H. Yanagi, K.B. Kim, I. Koizumi et al., J. Phys. Chem. C 113, 18379 (2009)

    Article  Google Scholar 

  3. 3.

    Lauren P. Rand, John D. Williams, IEEE 43, 190 (2015)

    Google Scholar 

  4. 4.

    N. Ukrainczyk, T. Matusinović, Cement. Concr. Res. 40, 128 (2010)

    Article  Google Scholar 

  5. 5.

    K. Hayashi, N. Uedac, M. Hiranob, H. Hosonoa, J. Am. Chen. Soc. 124, 738 (2002)

    Article  Google Scholar 

  6. 6.

    Alexander M. Volodin, Vladimir I. Zaikovskii et al., Mater. Lett. 189, 210 (2017)

    Article  Google Scholar 

  7. 7.

    C. Song, J. Sun, S. Qiu et al., Chem. Mater. 20, 3473 (2008)

    Article  Google Scholar 

  8. 8.

    C. Jung, D.H. Yoon, Surf. Eng. 27, 389 (2011)

    Article  Google Scholar 

  9. 9.

    N. Kumamoto, D. Nakauchi, T. Kato et al., Jpn. J. Appl. Phys. 57, 0212 (2018)

    Article  Google Scholar 

  10. 10.

    S.W. Kim, S. Matsuishi, M. Miyakawa et al., J. Mater. Sci.: Mater. Electron. 18, S5 (2007)

    Google Scholar 

  11. 11.

    W. Kerrour, A. Kabir, G. Schmerber et al., J. Mater. Sci. 27, 10106 (2016)

    Google Scholar 

  12. 12.

    S.W. Kim, M. Miyakawa, M. Hirano et al., Mater. Trans. 49, 1748 (2008)

    Article  Google Scholar 

  13. 13.

    Y. Kohama, S.W. Kim, T. Tojo et al., Phys. Rev. B 77, 092505 (2008)

    Article  Google Scholar 

  14. 14.

    S.W. Kim, S. Matsuishi, T. Nomura et al., Nano Lett. 7, 1138 (2007)

    Article  Google Scholar 

  15. 15.

    S. Matsuishi, S.W. Kim, T. Kamiya et al., J. Phys. Chem. C 112, 4753 (2008)

    Article  Google Scholar 

  16. 16.

    S.W. Kim, Y. Toda, K. Hayashi et al., Chem. Mater. 18, 1938 (2006)

    Article  Google Scholar 

  17. 17.

    S.W. Kim, K. Hayashi, M. Hirano et al., J. Am. Ceram. Soc. 89, 3294 (2006)

    Article  Google Scholar 

  18. 18.

    J. Zhao, X. Zhang, H. Liu et al., Cryst. Res. Technol. 53, 1700201 (2018)

    Article  Google Scholar 

  19. 19.

    Y. Toda, H. Yanagi, E. Ikenaga et al., Adv. Mater. 19, 3564 (2007)

    Article  Google Scholar 

  20. 20.

    U. Petermann, I.D. Baikie, B. Lägel, Thin Solid Films 343, 492 (1999)

    Article  Google Scholar 

  21. 21.

    I.D. Baikie, U. Petermann, B. Lägel, K. Dirscherl, J. Vac. Sci. Technol. A 19(4), 1460 (2001)

    Article  Google Scholar 

  22. 22.

    S. Halas, T. Durakiewicz, J. Phys.: Condens. Matter. 10, 10815 (1998)

    Google Scholar 

  23. 23.

    P.A. Simonov, V.A. Likholobov, in Physicochemical Aspects of Preparation of Carbon-Supported Noble Metal Catalysts, ed. by A. Wieckowski, E.R. Savinova, C.G. Vayenas (CRC Press, Novosibirsk, 2003), pp. 409–454

    Google Scholar 

  24. 24.

    Y. Toda, S. Matsuishi, K. Hayashi et al., Adv. Mater. 16, 685 (2004)

    Article  Google Scholar 

  25. 25.

    S.W. Kimay, H. Hosono, Philos. Mag. 92, 2596 (2012)

    Article  Google Scholar 

  26. 26.

    T. Yoshizumi, K. Hayashi, Appl. Phys. Express 6, 015802 (2013)

    Article  Google Scholar 

  27. 27.

    W. Zou, K. Khan, X. Zhao et al., Mater. Res. Express. 4, 036408 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fan Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ji, C. & Gu, F. Investigation on electrical conductivity and surface distribution of work function of C12A7 electride. J Mater Sci: Mater Electron 30, 16421–16426 (2019). https://doi.org/10.1007/s10854-019-02016-2

Download citation