Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16376–16383 | Cite as

Synthesis and multicolor luminescence of Tb3+ and Sm3+ co-doped LiGd(MoO4)2 phosphor

  • Ting Yu
  • Mingyan Gao
  • Haiming Cheng
  • Guixia LiuEmail author
  • Chao SongEmail author
  • Xiangting Dong
  • Jinxian Wang
  • Wensheng Yu
Article
  • 24 Downloads

Abstract

Herein, Tb3+ and Sm3+ single doped and co-doped LiGd(MoO4)2 phosphors were prepared via a sol–gel method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) fluorescence spectroscopy were utilized to investigate the structure, morphology and luminescent properties of the samples, respectively. XRD and FESEM analyses show that the samples are tetragonal phase crystals with an average size of 3 μm. In the photoluminescence excitation spectra, the MoO42− group plays a dominant role in absorbing near ultraviolet light and transferring energy to Tb3+ and Sm3+. Under the excitation of 287 nm ultraviolet light, both the green emission of Tb3+ and the orange–red emission of Sm3+ could be observed from the emission spectra of LiGd(MoO4)2: 0.01 Tb3+, xSm3+ phosphors. Accordingly, LiGd(MoO4)2: 0.01 Tb3+, 0.01Sm3+ phosphor shows an emission color that can be modulated from yellow to red, and then to yellow–green light when excited by 287, 365, 377, 405, 417, 465, 483, and 488 nm, respectively. As a result, the tunable emission color of the phosphors can be provided by changing the doping concentration of Sm3+ and the excitation wavelength.

Notes

Acknowledgements

This work was sponsored by the Development of Science and Technology of Jilin Province (Grant No. 20170101185JC).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    K.A. Kumar, S. Babu, V.R. Prasad, S. Damodaraiah, Y.C. Ratnakaram, Mater. Res. Bull. 90, 31–40 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, G.X. Liu, X.T. Dong, J.X. Wang, W.X. Yu, Phys. Chem. Chem. Phys. 17, 26638–26645 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, W.T. Gong, G.L. Ning, New J. Chem. 40, 10136–10143 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, Inorg. Chem. 53, 11457–11466 (2014)CrossRefGoogle Scholar
  5. 5.
    W.J. Hu, F.F. Hu, X.Y. Li, H.W. Fang, L. Zhao, Y.H. Chen, C.K. Duan, M. Yin, RSC Adv. 6, 84610–84615 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Y. Wang, L.P. Wang, Y.Y. Gu, S.H. Yu, Z.G. Lu, R. Sun, RSC Adv. 4, 4754–4762 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Krishnan, J. Thirumalai, New J. Chem. 38, 3480–3491 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Zhao, Z.L. Sui, X.T. Wei, J. Zuo, X.W. Zhang, R.C. Dai, Z.M. Zhang, Z.J. Ding, CrystEngComm 17, 7905–7914 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Li, C.F. Guo, H. Suo, P.J. Zhao, J. Mater. Chem. C. 4, 1964–1971 (2016)CrossRefGoogle Scholar
  10. 10.
    S.B. Cui, W. Xu, Y.S. Zhu, X. Chen, D.L. Zhou, Z. Yin, H.W. Song, W. Han, RSC Adv. 5, 104862–104869 (2015)CrossRefGoogle Scholar
  11. 11.
    B.P. Singh, P.V. Ramakrishna, S. Singh, V.K. Sonu, S. Singh, P. Singh, A. Bahadur, R.A. Singh, S.B. Rai, RSC Adv. 5, 55977–55985 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Zheng, B.J. Chen, H.Q. Yu, J.S. Sun, X.P. Li, J.S. Zhang, H. Zhong, Z.L. Wu, H.P. Xia, RSC Adv. 5, 56337–56347 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Xu, W. Yang, X. Li, W. Li, X. Ju, Luminescence 29, 711–714 (2014)CrossRefGoogle Scholar
  14. 14.
    Y.X. Liu, G.X. Liu, X.T. Dong, J.X. Wang, W.S. Yu, New J. Chem. 39, 8282–8290 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.Q. Zhai, W. Zhang, Y.J. Yin, Y. Han, X. Zhao, H.H. Ding, N. Li, Ceram. Int. 43, 841–846 (2016)CrossRefGoogle Scholar
  16. 16.
    L.L. Wang, H.M. Noh, B.K. Moon, S.H. Park, K.H. Kim, J.S. Shi, J.H. Jeong, J. Phys. Chem. C 119, 15517–15525 (2015)CrossRefGoogle Scholar
  17. 17.
    Q. Ren, F. Lin, X.L. Wu, O. Hai, T.Y. Wei, Y.H. Jiao, H.H. Li, Mater. Res. Bull. 90, 66–72 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Jha, A.K. Vishwakarma, M. Jayasimhadri, D. Haranath, J. Alloy. Compd. 719, 116–124 (2017)CrossRefGoogle Scholar
  19. 19.
    H.X. Guan, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, Dalton Trans. 43, 10801–10808 (2014)CrossRefGoogle Scholar
  20. 20.
    S.C. Xu, Z.J. Wang, P.L. Li, T. Li, Q.Y. Bai, J. Sun, Z.P. Yang, J. Am. Ceram. Soc. 100, 2069–2080 (2017)CrossRefGoogle Scholar
  21. 21.
    R.P. Cao, K.B. Chen, S.H. Jiang, Z.Y. Luo, X.G. Yua, P. Liu, Luminescence 31, 388–393 (2016)CrossRefGoogle Scholar
  22. 22.
    Z.X. Zhang, Y.P. Zhang, C. Wang, Z.G. Feng, W.H. Zhang, H.P. Xia, J. Mater. Sci. Technol. 33, 432–437 (2017)CrossRefGoogle Scholar
  23. 23.
    Z.Z. Zhu, G.S. Fu, Y. Yang, Z.P. Yang, P.L. Li, J. Mater. Sci. 51, 6944–6954 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.I. Jeon, L.K. Bharat, J.S. Yu, J. Lumin. 166, 93–100 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Xie, G.X. Liu, X.T. Dong, J.X. Wang, W.S. Yu, RSC Adv. 5, 77866–77872 (2015)CrossRefGoogle Scholar
  26. 26.
    H.X. Guan, Y. Sheng, Y.H. Song, K.Y. Zheng, C.Y. Xu, X.M. Xie, Y.Z. Dai, H.F. Zou, RSC Adv. 6, 73160–73169 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, G.X. Liu, X.T. Dong, J.X. Wang, W.S. Yu, RSC Adv. 4, 58708–58716 (2014)CrossRefGoogle Scholar
  28. 28.
    H.K. Liu, L.B. Liao, J. Chen, Q.F. Guo, Y.Y. Zhang, L.F. Mei, J. Lumin. 169, 739–743 (2016)CrossRefGoogle Scholar
  29. 29.
    W.J. Zhou, M. Gu, Y.Y. Ou, C.H. Zhang, X.J. Zhang, L. Zhou, H.B. Liang, Inorg. Chem. 56, 7433–7442 (2017)CrossRefGoogle Scholar
  30. 30.
    H.Y. Wu, J.F. Yang, X.X. Wang, S.C. Gan, L.L. Li, Solid State Sci. 77, 20–26 (2018)CrossRefGoogle Scholar
  31. 31.
    R.D. Shanan, Acta Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  32. 32.
    A.M. Li, D.K. Xu, H. Lin, S.H. Yang, Y.Z. Shao, Y.L. Zhang, Z.Q. Chen, RSC Adv. 5, 45693–45702 (2015)CrossRefGoogle Scholar
  33. 33.
    X. Ming, Q.Y. Meng, J.H. Xiong, W.J. Sun, J. Alloy. Compd. 695, 1691–1698 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin ProvinceChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations