Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16195–16206 | Cite as

Construction of AgIn5S8/gC3N4 composite and its enhanced photocatalytic hydrogen production and degradation of organic pollutants under visible light irradiation

  • Xiang Li
  • Baojun Yang
  • Chuang Xu
  • Junyang Liu
  • Wencong Lu
  • Sarfaraz Khan
  • Li FengEmail author


Photocatalysis has received tremendous attention among researchers due to its practical usage of solar energy in the field of degradation of toxic pollutants and energy harvesting. In this work, we reported an AgIn5S8/gC3N4 composite as visible light active photocatalyst for hydrogen production and toxic pollutants degradation. Furthermore, the synthesized composites were properly investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectance spectroscopy (UV–vis DRS) and electrochemical impedance spectroscopy (EIS) measurement. The visible light photocatalytic performance was investigated through the degradation of a cationic dye Rhodamine B (RhB) dye from aqueous solution. The photocatalytic hydrogen production results show that AgIn5S8 loaded with 25% of g-C3N4 exhibited higher hydrogen production rate than pure AgIn5S8 and g-C3N4. All the obtained outputs showed that the combination of AgIn5S8 and gC3N4 could exhibit excellent visible light response and better charge separation behaviour, which leads to better photocatalytic performance in AgIn5S8/gC3N4 composite system. Furthermore, AgIn5S8/gC3N4 composite photocatalyst retains good stability in the performance of consecutive cycle usage. The plausible mechanism of the photocatalytic reactions was also studied and explained.



The authors are grateful for the financial support provided by the Chongqing Science and Technology Commission Project (Project No. cstc2018jcyjAX0699), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201801515), the Open Fund of Chongqing Key Laboratory of Industrial Fermentation Microorganism (Chongqing University of Science and Technology) (Project No. LIFM201709), the Fundamental Research Funds for the Central Universities, CHD (No. 300102289108), and the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth’s Dynamics (Grant No. SKLGED2018-1-3-E).


  1. 1.
    X. Zhang, Z.H. Ai, F.L. Jia et al., Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. Phys. Chem. C 112, 747–753 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J Mater Sci: Mater Electron 29, 1719–1747 (2018)Google Scholar
  3. 3.
    R.Q. Hen, A.J.L. Mourao, A.R. Malagutti, C. Ribeiro, Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Appl. Catal. A 382, 284–292 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Pirhashemia, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)CrossRefGoogle Scholar
  6. 6.
    F. Dong, Z. Wang, Y. Li, W.K. Ho, S.C. Lee, Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 48, 10345–10353 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review. Crit. Rev. Environ. Sci. Technol. 48, 806–857 (2018)CrossRefGoogle Scholar
  8. 8.
    E. Hong, D. Kim, J.H. Kim, Heterostructured metal sulfide (ZnS-CuS-CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting. J. Ind. Eng. Chem. 20, 3869–3874 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Wu, P. Wang, J. Qian, Y. Ao, C. Wang, J. Hou, Noble-metal-free nickel phosphide modified CdS/C3N4 nanorods for dramatically enhanced photocatalytic hydrogen evolution under visible light irradiation. Dalton Trans. 46, 13793–13801 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Chen, T.-Y. Liu, T. Huang, X.-H. Liu, X.-J. Yang, Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. Nanoscale 8, 3711–3719 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Jia, Q. Chen, J. Chen, T. Wang, Z. Li, X. Dou, The photovoltaic properties of novel narrow band gap Cu2SnS3 films prepared by a spray pyrolysis method. RSC Adv. 5, 28885–28891 (2015)CrossRefGoogle Scholar
  12. 12.
    S.E. Moosavifard, S. Fani, M. Rahmanian, Hierarchical CuCo2S4 hollow nano needle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem. Commun. 52, 4517–4520 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Gong, Y.H. Liu, B.D. Mao, B. Wang, L.L. Tan, D. Li et al., Mechanism study on the photocatalytic efficiency enhancement of MoS2 modified Zn-AgIn5S8 quantum dots. RSC Adv. 6, 99023–99033 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Li, L. Wang, D. Wei, S. Kang, J. Mu, One-pot synthesis and visible light photocatalytic activity of monodispersed AgIn5S8 microspheres. Mater. Res. Bull. 48, 286–289 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Deng, L. Zhao, X. Luo, S. Luo, D.D. Dionysiou, Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater. Chem. Eng. J. 333, 423–433 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Delice, M. Isik, N.M. Gasanly, Trap distribution in AgIn5S8 single crystals: thermoluminescence study. J. Phys. Chem. Solids 114, 53–57 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, B. Mao, G. Gong, D. Li, Y. Liu, W. Cao, L. Xing, J. Zeng, W. Shi, S. Yuan, In-situ growth of Zn- AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hydrogen Energy 44, 15882–15891 (2019)CrossRefGoogle Scholar
  18. 18.
    K.W. Cheng, C.H. Jhuang, L.Y. Yeh, Influence of gallium on the growth and photoelectrochemical performances of AgIn5S8 photoelectrodes. Thin Solid Films 524, 238–244 (2012)CrossRefGoogle Scholar
  19. 19.
    S.-X. Zhou, X.-Y. Tao, J. Ma, L.-T. Guo, Y.-B. Zhu, H.-L. Fan et al., Synthesis of flower-like PANI/g-C3N4 nanocomposite as supercapacitor electrode. Vacuum 149, 175–179 (2018)CrossRefGoogle Scholar
  20. 20.
    Z. Qin, M. Wang, R. Li, Y. Chen, Novel Cu3P/g-C3N4 p-n heterojunction photocatalysts for solar hydrogen generation. Sci. China Mater. 61, 861–868 (2018)CrossRefGoogle Scholar
  21. 21.
    L. Zeng, X. Ding, Z. Sun, W. Hua, W. Song, S. Liu, L. Huang, Enhancement of photocatalytic hydrogen evolution activity of g-C3N4 induced by structural distortion via post-fluorination treatment. Appl. Catal. B 227, 276–284 (2018)CrossRefGoogle Scholar
  22. 22.
    P. Niu, G. Liu, H.M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116(20), 11013–11018 (2012)CrossRefGoogle Scholar
  23. 23.
    R.M. Mohamed, A. Shawky, M.S. Aljahdali, Palladium/zinc indium sulfide microspheres: enhanced photocatalysts prepare methanol under visible light conditions. J. Taiwan Inst. Chem. Eng. 65, 498–504 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Zhu, A. Anzai, A. Yamamoto, H. Yoshida, Silver-loaded sodium titanate photocatalysts for selective reduction of carbon dioxide to carbon monoxide with water. Appl. Catal. B 243, 47–56 (2019)CrossRefGoogle Scholar
  25. 25.
    V. Preethi, S. Kanmani, Performance of nano photocatalysts for the recovery of hydrogen and sulphur from sulphide containing wastewater. Int. J. Hydrogen Energy 43, 3920–3934 (2018)CrossRefGoogle Scholar
  26. 26.
    J. Wang, H. Yao, Z. Fan, L. Zhang, J. Wang, S. Zang, Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mater. Interfaces 8, 3765–3775 (2015)CrossRefGoogle Scholar
  27. 27.
    Z. Guan, Z. Xu, Q. Li, P. Wang, G. Li, J. Yang, AgIn5S8 nanoparticles anchored on 2D layered ZnIn2S4 to form 0D/2D heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B 227, 512–518 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Nanu, J. Schoonman, A. Goossens, Solar-energy conversion in TiO2/CuInS2 nanocomposites. Adv. Funct. Mater. 15, 95–100 (2005)CrossRefGoogle Scholar
  29. 29.
    G.K. Fu, G.A. Xu, S.P. Chen, L. Lei, M.L. Zhang, Ag3PO4/Bi2WO6 hierarchical heterostructures with enhanced visible light photocatalytic activity for the degradation of phenol. Catal. Commun. 40, 120–124 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Cao, X. Li, H.L. Lin, S.F. Chen, X.L. Fu, In situ preparation of novel p–n junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity. J. Hazard. Mater. 239–240, 316–324 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Chen, Y. Hu, S. Meng, X. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B 150–151, 564–573 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Katsumat, Y. Tachi, T. Suzuki, S. Kanecom, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts. RSC Adv. 4, 21405 (2014)CrossRefGoogle Scholar
  33. 33.
    Ren-Bin Wei, Zan-Ling Huang, Gu Guang-Hui, Zhu Wang, Lixi Zeng, Yibo Chen, Zhao-Qing Liu, Dual-cocatalysts decorated rimous CdS spheres advancing highly efficient visible-light photocatalytic hydrogen production. Appl. Catal. B 231, 101–107 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Khan, U. Alam, W. Raza, D. Bahnemann, M. Muneer, One-pot, self-assembled hydrothermal synthesis of 3D flower-like CuS/g-C3N4 composite with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. Solids 115, 59–68 (2018)CrossRefGoogle Scholar
  35. 35.
    T. Liu, B. Liu, L. Yang, X. Ma, H. Li, S. Yin, T. Sato, T. Sekino, Y. Wang, RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B 204, 593–601 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Bai, X.P. Shen, H.W. Lv, G.X. Zhu, C.L. Bao, Y.X. Shan, Assembly of Ag3PO4 nanocrystals on graphene-based nanosheets with enhanced photocatalytic performance. J. Colloid Interface Sci. 405, 1–9 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Vadivel, B. Paul, A.H. Yangjeh, D. Maruthamani, M. Kumaravel, T. Maiyalagan, One-pot hydrothermal synthesis of CuCo2S4/RGO nanocomposites for visible-light photocatalytic applications. J. Phys. Chem. Solids 123, 242–253 (2018)CrossRefGoogle Scholar
  38. 38.
    Q. Xiao, J. Zhang, C. Xiao, X.K. Tan, Photocatalytic degradation of methylene blue over Co3O4/BiWO6 composite under visible light irradiation. Catal. Commun. 9, 1247–1253 (2008)CrossRefGoogle Scholar
  39. 39.
    D.Q. Bi, Y.M. Xu, Improved photocatalytic activity of WO3 through clustered Fe2O3 for organic degradation in the presence of H2O2. Langmuir 27, 9359–9366 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Wang, J. Yu, W. Xiao, Q. Li, Microwave-assisted hydrothermal synthesis of graphene based Au–TiO2 photocatalysts for efficient visible-light hydrogen production. J. Mater. Chem. A 2, 3847–3855 (2014)CrossRefGoogle Scholar
  41. 41.
    J. Kamalakkannan, V.L. Chandraboss, B. Karthikeyan, S. Senthilvelan, Synthesis of InMoO3–TiO2 nanocomposite—photocatalysis of genotoxic dye multiapplication study. Ceram. Int. 42, 10197–10208 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, α-Bi2O3 nanorods: an efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceram. Int. 41, 3355–3364 (2015)CrossRefGoogle Scholar
  43. 43.
    S.H. Jiang, K.Q. Zhou, Y.Q. Shi, S.M. Lo, H.Y. Xu, Y. Hu, Z. Gui, In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 290, 313–319 (2014)CrossRefGoogle Scholar
  44. 44.
    J. Wang, F. Qu, X. Wu, Photocatalytic degradation of organic dyes with hierarchical Ag2O/ZnO heterostructures. Sci. Adv. Mater. 5, 1364–1371 (2013)CrossRefGoogle Scholar
  45. 45.
    C. Zhao, G. Tan, J. Huang, W. Yang, H. Ren, A. Xia, Preparation of self-assembled spherical g-C3N4/tz-Bi0.92Gd0.08 VO4 heterojunctions and their mineralization. ACS Appl. Mater. Interfaces 43, 23949–23957 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Habibi-Yangjeh, M. Mousavi, K. Nakata, Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: novel magnetically recoverable photocatalysts. J. Photochem. Photobiol. A 368, 120–136 (2019)CrossRefGoogle Scholar
  47. 47.
    S. Asadzadeh-Khaneghaha, A. Habibi-Yangjeha, K. Nakata, Decoration of carbon dots over hydrogen peroxide treated graphitic carbon nitride: exceptional photocatalytic performance in removal of different contaminants under visible light. J. Photochem. Photobiol. A 374, 161–172 (2019)CrossRefGoogle Scholar
  48. 48.
    A. Habibi-Yangjeh, Mitra Mousavi, Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv. Powder Technol. 29, 1379–1392 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: boosting visible-light-driven photocatalytic activity. J. Taiwan Inst. Chem. Eng. 87, 98–111 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Mousavi, A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv. Powder Technol. 29, 94–105 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiang Li
    • 1
    • 2
  • Baojun Yang
    • 3
  • Chuang Xu
    • 4
    • 5
  • Junyang Liu
    • 4
  • Wencong Lu
    • 4
  • Sarfaraz Khan
    • 6
  • Li Feng
    • 4
    Email author
  1. 1.School of Civil Engineering and ArchitectureChongqing University of Science and TechnologyChongqingChina
  2. 2.Chongqing Key Laboratory of Energy Engineering Mechanics & Disaster Prevention and MitigationChongqingChina
  3. 3.College of Mechanical EngineeringChongqing UniversityChongqingChina
  4. 4.School of Civil and Transportation EngineeringGuangdong University of TechnologyGuangzhouChina
  5. 5.State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina
  6. 6.Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of EducationChongqing UniversityChongqingChina

Personalised recommendations