Skip to main content

Advertisement

Log in

Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO) anchored vanadium pentoxide (V2O5) nanorods have been synthesized by using simple and cost efficacious sol–gel method. The prepared sample was analyzed by different physical and electrochemical techniques such as TG/DTA, XRD, XPS, FTIR, Micro-Raman, FESEM, HRTEM and cyclic voltammetry and galvanostatic charge/discharge. The electrochemical characterization shows that all the curves exhibit quasi-rectangular shape with redox peak, which indicates the pseudocapacitance nature of the V2O5 and RGO/V2O5 electrode materials. V2O5 electrode material exhibits the high specific capacitance (112 F/g) at low scan rate (10 mV/s) due to high surface area. The RGO/V2O5 electrode material exhibits two folds greater specific capacitance values (218.4 F/g at 10 mV/s) than pure V2O5 electrode material. This result clearly indicates the pseudocapacitance nature was enhanced by the RGO nanosheets. The GCD curve also reveals the RGO/V2O5 electrode has good charge/discharge time and superior specific capacitance than bare V2O5 electrode. These excellent electrochemical activities may credit due to RGO nanosheets, which induce large transfer of electrons and also provides high surface sites and short transport path length for the diffusion of electrolyte ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.K. Ranaweera, Z. Wang, E. Alaqurashi, P.K. Kahol, P.R. Dvornic, B.K. Gupta, K. Ramasamy, A.D. Mohite, G. Gupta, R.K. Gupta, Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitor and hydrogen evolution. J. Mater. Chem. 4, 9014–9018 (2016)

    Article  CAS  Google Scholar 

  2. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  Google Scholar 

  3. A. Ramadoss, B. Saravanakumar, S.J. Kim, Vanadium Pentoxide/Reduced Graphene Oxide Composite as an Efficient Electrode Material for High-Performance Supercapacitors and Self-Powered Systems. Energy Technol. 3, 913–924 (2015)

    Article  CAS  Google Scholar 

  4. S. Liu, K. Vijaya Sankar, A. Kundu, M. Ma, J.-Y. Kwon, S.C. Jun, Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. Appl. Mater. Interfaces 9, 21829–21838 (2017)

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Zhai, Preparation of Y-doped ZrO2 coatings on MnO2 electrodes and their effect on electrochemical performance for MnO2 electrochemical supercapacitor. RSC Adv. 6, 1750–1759 (2016)

    Article  CAS  Google Scholar 

  6. X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011)

    Article  CAS  Google Scholar 

  7. W.C. Chen, C.C. Hu, C.C. Wang, C.K. Min, Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. J. Power Sources 125, 292–298 (2004)

    Article  CAS  Google Scholar 

  8. Y.-T. Kim, K. Tadai, T. Mitani, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 15, 4914–4921 (2005)

    Article  CAS  Google Scholar 

  9. Y.-T. Wang, A.-H. Lu, H.-L. Zhang, W.-C. Li, Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J. Phys. Chem. C 115, 5413–5421 (2011)

    Article  CAS  Google Scholar 

  10. S. Ramesh, Y. Haldorai, H.S. Kim, J.H. Kim, A nanocrystalline Co3O4 @ polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors. RSC Adv. 7, 36833–36843 (2017)

    Article  CAS  Google Scholar 

  11. M. Chen, Q. Ge, M. Qi, X. Liang, F. Wang, Q. Chen, Cobalt oxides nanorods arrays as advanced electrode for high performance supercapacitor. Surf. Coat. Technol. 360, 73–77 (2019)

    Article  CAS  Google Scholar 

  12. D.P. Nair, T. Sakthivel, R. Nivea, J.S. Eshow, V. Gunasekaran, Effect of surfactants on electrochemical properties of vanadium-pentoxide nanoparticles synthesized via hydrothermal method. J. Nanosci. Nanotechnol. 15(6), 4392–4397 (2015)

    Article  CAS  Google Scholar 

  13. R. Yu, C. Zhang, Q. Meng, Z. Chen, H. Liu, Z. Guo, Facile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties. ACS Appl. Mater. Interfaces. 5, 12394–12399 (2013)

    Article  CAS  Google Scholar 

  14. J.C. Selvakumari, S.T. Nishanthi, J. Dhanalakshmi, M. Ahila, D.P. Padiyan, Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application. Appl. Surf. Sci. 441, 530–537 (2018)

    Article  CAS  Google Scholar 

  15. L. Xihong, G. Wang, T. Zhai, Yu. Minghao, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012)

    Article  CAS  Google Scholar 

  16. Z. Zhang, Q. Gao, H. Gao, Z. Shi, W. Junwei, M. Zhi, Z. Hong, Nickel oxide aerogel for high performance supercapacitor electrodes. RSC Adv. 6, 112620–112624 (2016)

    Article  CAS  Google Scholar 

  17. M. Li, G. Sun, P. Yin, C. Ruan, K. Ai, Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 5, 11462–11470 (2013)

    Article  CAS  Google Scholar 

  18. M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.-B.-R. Lee, B.H. Kim, Y. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 8151–8158 (2015)

    Article  CAS  Google Scholar 

  19. H. Zhao, L. Pan, S. Xing, J. Luo, J. Xu, Vanadium oxidesereduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J. Power Sources 222, 21–31 (2013)

    Article  CAS  Google Scholar 

  20. J.S. Bonsoa, A. Rahya, S.D. Perera, N. Nour, O. Seitz, Y.J. Chabal, K.J. Balkus Jr., J.P. Ferraris, D.J. Yang, Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. J. Power Sources 203, 227–232 (2012)

    Article  CAS  Google Scholar 

  21. C. Subba Reddy, K.-I. Park, S.-i. Mho, I.-H. Yeo, S.-M. Park, Simple preparation of V2O5 nanostructures and their characterization. Bull. Korean Chem. Soc. 29(10), 2061–2064 (2008)

    Article  CAS  Google Scholar 

  22. L. Cao, J. Zhu, Y. Li, P. Xiao, Y. Zhang, S. Zhang, S. Yang, Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. J. Mater. Chem. A. 2, 13136–13142 (2014)

    Article  CAS  Google Scholar 

  23. Yu. Weijie, J. Wangn, Z. Gou, W. Zeng, W. Guo, L. Lin, Hydrothermal synthesis of vanadium pentoxide nanostructures and their morphology control. Ceram. Int. 39, 2639–2643 (2013)

    Article  CAS  Google Scholar 

  24. P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, Vanadium pentoxide nanofibers by electrospinning. Scr. Mater. 49, 577–581 (2003)

    Article  CAS  Google Scholar 

  25. J. Shin, H. Jung, Y. Kim, J. Kim, Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries. J. Alloys Compd. 589, 322–329 (2014)

    Article  CAS  Google Scholar 

  26. A.-M. Cao, H. Jin-Song, H.-P. Liang, L.-J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. 44, 4391–4395 (2005)

    Article  CAS  Google Scholar 

  27. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater. Chem. Phys. 170, 266–275 (2015)

    Article  CAS  Google Scholar 

  28. D. Surya Bhaskaram, R. Cheruku, G. Govindaraj, Reduced graphene oxide wrapped V2O5 nanoparticles: green synthesis and electrical properties. J. Mater. Sci.: Mater. Electron. 27, 10855–10863 (2016)

    CAS  Google Scholar 

  29. P.T. Yin, S. Shah, M. Chhowalla, K.-B. Lee, Design, synthesis and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115, 2483–2531 (2015)

    Article  CAS  Google Scholar 

  30. F. Meimei, C. Ge, Z. Hou, J. Cao, B. He, F. Zeng, Y. Kuang, Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors. Phys. B 421, 77–82 (2013)

    Article  CAS  Google Scholar 

  31. Z. Liu, H. Zhang, Q. Yang, Y. Chen, Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim. Acta 287, 149–157 (2018)

    Article  CAS  Google Scholar 

  32. B. Huang, Y. Liu, B. Li, G. Zeng, H. Xinjiang, B. Zheng, T. Li, L. Jiang, X. Tan, L. Zhou, Synthesis of graphene oxide decorated with core@double-shell nanoparticles and application for Cr(VI) removal. RSC Adv. 5, 106339–106349 (2015)

    Article  CAS  Google Scholar 

  33. D.-L. Fang, Z.-D. Chen, X. Liu, W. Zheng-Fei, C.-H. Zheng, Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim. Acta 81, 321–329 (2012)

    Article  CAS  Google Scholar 

  34. R. Abazari, S. Sanati, L.A. Saghatforoush, Non-aggregated divanadium pentoxide nanoparticles: a one-step facile synthesis. Morphological, structural, compositional, optical properties and photocatalytic activities. Chem. Eng. J. 236, 82–90 (2014)

    Article  CAS  Google Scholar 

  35. A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.W. Arey, G. Li, S.-q. Liang, J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193–9199 (2010)

    Article  CAS  Google Scholar 

  36. M. Mahajan, K. Singh, O.P. Pandey, Structural and growth kinetics of in situ reduced V2O5. Int. J. Refract. Met. Hard Mater. 46, 90–95 (2014)

    Article  CAS  Google Scholar 

  37. N. Senthil Kumar, J. Chandrasekaran, R. Mariappan, M. Sethuraman, M. Chavali, V2O5 nano-rods using low temperature chemical pyrophoric reaction technique: the effect of post annealing treatments on the structural, morphological, optical and electrical properties. Superlattices Microstruct. 65, 353–364 (2014)

    Article  CAS  Google Scholar 

  38. S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)

    Article  CAS  Google Scholar 

  39. N. Asim, S. Radiman, M.A. Yarmo, M.S. Banaye Golriz, Vanadium pentoxide: synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous Mesoporous Mater. 120, 397–401 (2009)

    Article  CAS  Google Scholar 

  40. A. Venkatesan, N.R.K. Chandar, A. Kandasamy, M. Karl Chinnu, K.N. Marimuthu, R. Mohan Kumar, R. Jayavel, Luminescence and electrochemical properties of rare earths (Gd, Nd) doped V2O5 nanostructures synthesized by non-aqueous sol–gel route. RSC Adv. 5, 21778–21785 (2015)

    Article  CAS  Google Scholar 

  41. Y.L. Cheah, N. Gupta, S.S. Pramana, V. Aravindan, G. Wee, S. Madhavi, Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources 196, 6465–6472 (2011)

    Article  CAS  Google Scholar 

  42. M. Farahmandjou, N. Abaeyan, Simple synthesis of vanadium oxide (V2O5) nanorods in presence of CTAB surfactant. Colloid Surf. Sci. 1(1), 10–13 (2016)

    Google Scholar 

  43. P.K. Boruah, S. Szunerits, R. Boukherroub, M.R. Das, Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere 191, 503–513 (2018)

    Article  CAS  Google Scholar 

  44. N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector. Sensors Actuators A 250, 250–257 (2016)

    Article  CAS  Google Scholar 

  45. S. Rajeshwari, J. Santhosh Kumar, R.T. Rajendrakumar, N. Ponpandian, P. Thangadurai, Influence of Sn ion doping on the photocatalytic performance of V2O5 nanorods prepared by hydrothermal method. Mater. Res. Express. 5(1), 1–26 (2018)

    Google Scholar 

  46. J. Chen, B. Yao, C. Li, G. Shi, An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  CAS  Google Scholar 

  47. P. Bhawal, S. Ganguly, T.K. Chaki, N.C. Das, Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv. 6, 20781–20790 (2016)

    Article  CAS  Google Scholar 

  48. A. Qian, K. Zhuo, M.S. Shin, W.W. Chun, B.N. Choi, C.-H. Chung, Surfactant effects on the morphology and pseudocapacitive behavior of V2O5 H2O. Chemsuschem 8(14), 2399–2406 (2015)

    Article  CAS  Google Scholar 

  49. Y. Yang, L. Li, H. Fei, Z. Peng, G. Ruan, J.M. Tour, Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. Appl. Mater. Interfaces 6, 9590–9594 (2014)

    Article  CAS  Google Scholar 

  50. Y. Huang, Y. Zhang, Influence of the electrochemical properties of vanadium oxides on specific capacitance by molybdenum doping. Bull. Mater. Sci. 42(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  51. Y. Zhang, Y. Liu, J. Chen, Q. Guo, T. Wang, H. Pang, Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. Sci. Rep. 4, 1–5 (2014)

    Google Scholar 

  52. J.H. Park, J.M. Ko, O. Ok Park, D.W. Kim, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 105, 20–25 (2002)

    Article  CAS  Google Scholar 

  53. U. Ediga, R. Gaddam, P. Justin, R.R. Gangavarapu, Synthesis of mesoporous NiCo2O4-rGO by solvothermal method for charge storage applications. RSC Adv. 5, 66657–66666 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Govindarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, D., Uma Shankar, V. & Gopalakrishnan, R. Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods. J Mater Sci: Mater Electron 30, 16142–16155 (2019). https://doi.org/10.1007/s10854-019-01984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01984-9

Navigation