Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16099–16109 | Cite as

Facile synthesis of n-ZnO @ p-CuO nanocomposite for water purification enhanced decolorization of methyl orange

  • M. Mahendiran
  • J. J. Mathen
  • K. Mohamed Racik
  • J. Madhavan
  • M. Victor Antony RajEmail author


UV light-driven heterogeneous photocatalytic process has been broadly studied as a favorable technique for decolorization of pollutants present in organic wastewater. Herein, we have refined the ZnO@CuO nanocomposite enhanced UV light-driven photodecolorization process using methyl orange (MO) dye as the exemplary photocatalyst pollutant system. We found that the photocatalytic decolorization rate of methyl orange dye was prominently enhanced by ZnO@CuO nanocomposite, and the efficiency also subsequently had increased. The quality crystalline powder of ZnO@CuO nanocomposite was synthesized by adapting hydrothermal method owing to the conventionality and simplified taxonomy. The resulting powders were characterized to study their structural, morphological and optical properties. XRD patterns disclosed the formation of ZnO@CuO nanocomposite with favorable crystalline quality. High resolution scanning electron microscope and-transmission electron microscope images showed that the spherical morphology of nanorods had formed. The stretching and vibration of chemical bonds of the materials were further certified by FTIR spectroscopy. The strong UV emission peaks were detected and the energy gap of the composite had been found as 3.8 eV. Raman spectroscopy was used as an effectual way to assess purity, crystallinity and local vibrations of the sample. The lower PL intensity specified the restricted or slower recombination rate and higher PL intensity designated a faster recombination rate. Investigations of temperature dependent dielectric property of ZnO@CuO nanocomposite results were also discussed. The photocatalytic contaminant removal efficiency of the heterojunction ZnO@CuO nanocomposite over methyl orange was obtained as 91% under 70 min irradiation of the UV light. The present work gives a hopeful way to achieve ZnO@CuO nanocomposite heterojunction for the eco-friendly application in contaminant water purification.



  1. 1.
    C.G. Tian, Q. Zhang, A.P. Wu, M.J. Jiang, Z.L. Liang, B.J. Jiang, H.G. Fu, Chem. Commun. 48(23), 2858–2860 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Tongqin, L. Zijiong, Y. Gaoqian, J. Yong, Y. Hongjun, Nano Micro Lett. 5, 163–168 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Siuleiman, N. Kaneva, A. Bojinova, K. Papazova, A. Apostolov, D. Dimitrov, Colloids Surf. A 460, 408–413 (2014)CrossRefGoogle Scholar
  4. 4.
    R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326–3370 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Wang, Y. Ling, Y. Li, Nanoscale 4, 6682–6691 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Shen, C. Kronawitter, G. Kiriakidis, J Materiomics (2017). Google Scholar
  7. 7.
    J. Wang, R. Chen, Y. Xia, G. Wang, H. Zhao, L. Xiang et al., Ceram. Int. 43, 1870–1879 (2017)CrossRefGoogle Scholar
  8. 8.
    W.-T. Chen, V. Jovic, D. Sun-Waterhouse, H. Idriss, G.I. Waterhouse, Int. J. Hydrogen Energy 38, 15036–15048 (2013)CrossRefGoogle Scholar
  9. 9.
    N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, J. Colloid Interface Sci. 407, 215–224 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Goudarzi, M. Bazarganipour, M. Salavati-Niasari, RSC Adv. 4, 46517–46520 (2014)CrossRefGoogle Scholar
  11. 11.
    W.-J. Liu, F.-X. Zeng, H. Jiang, X.-S. Zhang, W.-W. Li, Chem. Eng. J. 180, 9–18 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Senthil Kumar, M. Selvakumar, S. Ganesh Babu, S. Induja, S. Karuthapandian, J. Alloys Compd 701, 562–573 (2017)CrossRefGoogle Scholar
  13. 13.
    T. Witoona, T. Permsirivanicha, M. Chareonpanicha, Ceram. Int. 39, 3371–3375 (2013)CrossRefGoogle Scholar
  14. 14.
    Michaela Simsíkova Jan Cechal, Anna Zorkovska, Marian Antalík, Tomas Sikola, Colloids Surf. B 123, 951–958 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Lei, Z. Hou, J. Xie, Fuel 164, 191–198 (2016)CrossRefGoogle Scholar
  16. 16.
    C.-C. Chang, C.-T. Chang, S.-J. Chiang, B.-J. Liaw, Y.-Z. Chen, Int. J. Hydrogen Energy 35, 7675–7683 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Hazard. Mater. 280, 713–722 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Mahendiran, J.J. Mathen, M. Racik, J. Madhavan, M.V.A. Raj, J. Phys. Chem. Solids 126, 322–334 (2019)CrossRefGoogle Scholar
  19. 19.
    S. Harish, J. Archana, M. Sabarinathan, M. Navaneethan, K.D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, H. Ikeda, D.K. Aswal, Y. Hayakawa, Appl. Surf. Sci. 418, 103–112 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Anand, A. Persis Amaliya, M. Asisi Janifer, S. Pauline, Modern Electron. Mater. 3, 168–173 (2017)CrossRefGoogle Scholar
  21. 21.
    R.M. Mohamed, F.A. Harraz, A. Shawky, Ceram. Int. 40, 2127–2133 (2014)CrossRefGoogle Scholar
  22. 22.
    G.P. Sneha, J.P. Corbett, M.W. Jadwisienczak, E. Martin, Kordesch Phys. E 79, 98–102 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Sumithra, N.V. Jaya, Phys. B 493, 35–42 (2016)CrossRefGoogle Scholar
  24. 24.
    S.D. Tiwari, K.P. Rajeev, Phys. Rev. B 72, 104433 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Li, L. Zhu, M. Xia, N. Jin, K. Luo, Y. Xie, Mater. Lett. 174, 99–101 (2016)CrossRefGoogle Scholar
  26. 26.
    J.Y. Yu, S.D. Zhuang, X.Y. Xu, W.C. Zhu, B. Feng, J.G. Hu, J. Mater. Chem. A 3, 1199 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Lu, W. Zhou, Y. Li, J. Wang, P. Wu, Appl. Surf. Sci. 399, 396–402 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Ashar, M. Iqbal, I.A. Bhatti, M.Z. Ahmad, K. Qureshi, J. Nisar et al., J. Alloys Compd. 678, 126–136 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Yang, X. Cao, S. Wang, L. Zhang, F. Xiao, X. Su, J. Wang, Ceram. Int. 41, 1749–1756 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Sahay, J. Sundaramurthy, P.S. Kumar, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Solid State Chem. 186, 261–267 (2012)CrossRefGoogle Scholar
  31. 31.
    X. Yang, C. Shao, H. Guan, H. Li, X. Gong, J. Inorg. Chem. Commun. 7, 176–178 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Samadi, H.A. Shivaee, M. Zanetti, A. Pourjavadi, A. Moshfegh, J. Mol. Catal. A 359, 42–48 (2012)CrossRefGoogle Scholar
  33. 33.
    W. Wang, Q. Zhou, X. Fei, Y. He, P. Zhang, G. Zhang, L. Peng, W. Xie, CrystEngCommun 12, 2232–2237 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Kuriakose, D. Avasthi, Mohapatra. J. Nanotechnol. 6, 928–937 (2015)Google Scholar
  35. 35.
    C.J. Li, X. Cao, W.H. Li, B.W. Zhang, L.Q. Xiao, J. Alloys Compd 773, 762–769 (2019)CrossRefGoogle Scholar
  36. 36.
    M. Lashgari, P.E. Haghighi, M. Takeguchi, Solar Energy Mater Solar Cells 165, 9–16 (2017)CrossRefGoogle Scholar
  37. 37.
    K. Dillip, P. Choudhary, B.K. Samantaray, Exp. Polym. Lett. 2(9), 630–638 (2008)CrossRefGoogle Scholar
  38. 38.
    A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, M. Jose, Superlattices Microstruct. 113, 271–282 (2018)CrossRefGoogle Scholar
  39. 39.
    A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, M. Jose, J. Alloys Compd. 771(15), 1–8 (2019)CrossRefGoogle Scholar
  40. 40.
    A. Sakthisabarimoorthi, S.A. Martin Britto Dhas, R. Robert, M. Jose. Mater. Res. Bull. 106, 81–92 (2018)CrossRefGoogle Scholar
  41. 41.
    A. Patsidis, G.S. Psarras, Exp. Polym. Lett. 2(10), 718 (2008)CrossRefGoogle Scholar
  42. 42.
    W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu, Y. Shao, J. Phys. Chem. C 116, 3552–3560 (2012)CrossRefGoogle Scholar
  43. 43.
    M.H. Habibi, Bahareh Karimi. J. Ind. Eng. Chem. 20, 1566–1570 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Sahu, S. Choudhary, S.A. Khan, A. Pandey, S. Mohapatra, Nano-Struct. Nano-Objects 17, 92–102 (2019)CrossRefGoogle Scholar
  45. 45.
    M. Mansournia, L. Ghaderi, J. Alloys Compd 691, 171–177 (2017)CrossRefGoogle Scholar
  46. 46.
    F.A. Cao, T. Wang, X. Ji, Appl. Surf. Sci. 471, 417–424 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsLoyola CollegeChennaiIndia
  2. 2.Loyola Institute of Frontier Energy (LIFE), Loyola CollegeChennaiIndia
  3. 3.Department of PhysicsSt. Thomas CollegePalaiIndia

Personalised recommendations