Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16065–16079 | Cite as

Effect of the occupation of Pb and Ti sites on the structural, microstructural and dielectric properties of Y-doped PbTiO3 samples

  • Mounir Belhajji
  • Salaheddine SayouriEmail author
  • Aziz Nfissi
  • Taj-dine Lamcharfi


Pb1−xYxTiO3 and PbYxTi1−xO3 (x = 0, 2, 5, 8 and 10%) samples were produced using the sol gel process, and their structural, microstructural and dielectric properties investigated. X-ray diffraction results show that a relatively low temperature of calcination of the undoped sample was sufficient to obtain the pure tetragonal structure without the presence of any secondary phases, and that Y3+ ions may occupy both Pb and Ti sites in the PbTiO3 matrix. As a result of doping with Y3+ ions into both Pb and Ti-sites, a strong reduction of the grain size of the undoped sample was revealed by Scanning Electron Microscopy analysis. Relatively high values of the dielectric permittivity were obtained under doping with Y into Ti-sites compared to those recorded under doping into Pb-sites as revealed by dielectric measurements. These values are higher in the case of low Y3+ content. Moreover, dielectric measurements showed that the samples approach their frequency resonance, the latter depending on the temperature.



  1. 1.
    T. Suwannasise, A. Safari, Effect of rare-earth additives on electromechanical properties of modified lead titanate ceramics. J. Am. Ceram. Soc. 76(12), 3155–3158 (1993)CrossRefGoogle Scholar
  2. 2.
    S. Ikegami, I. Udea, T. Nagata, Electromechanical properties of PbTiO3 ceramics containing La and Mn. J. Acoust. Soc. Am. 50, 1060–1066 (1971)CrossRefGoogle Scholar
  3. 3.
    T. Takahashi, Lead titanate ceramic with large piezoelectric anisotropy and their applications. Ceram. Bull. 69, 691–695 (1990)Google Scholar
  4. 4.
    E.C. Subbarao, J. Am. Ceram. Soc. 43, 119–122 (1960)CrossRefGoogle Scholar
  5. 5.
    T.-Y. Tien, W.G. Carlson, J. Am. Ceram. Soc. 45, 567–571 (1962)CrossRefGoogle Scholar
  6. 6.
    Y. Matsuo, H. Sasaki, J. Am. Ceram. Soc. 49, 229–230 (1966)CrossRefGoogle Scholar
  7. 7.
    I. Ueda, S. Ikegami, Japan J. Appl. Phys. 7, 236–242 (1968)CrossRefGoogle Scholar
  8. 8.
    K.M. Rittenmyer, R.Y. Ting, Piezoelectric and dielectric properties of calcium and samarium modified lead titanate ceramics for hydroacoustic applications. Ferroelectrics 110, 171–182 (1990)CrossRefGoogle Scholar
  9. 9.
    M.M. Nadoliisky, T.K. Vassileva, R.V. Yanchev, Pyroelectric and dielectric properties of modified lead titanate ceramics. Ferroelectrics 118, 111–115 (1991)CrossRefGoogle Scholar
  10. 10.
    K.K. Deb, Pyroelectric characteristics of (Pb0.9Sm0.1) TiO3 ceramics. Ferroelectrics 82, 45–53 (1988)CrossRefGoogle Scholar
  11. 11.
    M. Kobune, S. Fujii, K. Asada, Preparation of Mn-modified tetragonal PZT ceramics and theirpyroelectric properties. J. Ceram. Soc. Jpn. 104, 259–263 (1996)CrossRefGoogle Scholar
  12. 12.
    M.H. Lee, S.H. Bae, A.S. Bhalla, Thermal properties of a pyroelectric-ceramic infrared detector with metallic intermediate layer. Opt. Eng. 37, 1746–1753 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Kellati, S. Sayouri, N. El Moudden, M. Elaatmani, A. Kaal, M. Taibi, Structural and dielectric properties of La-doped Lead titanate ceramics. Mater. Res. Bull. 39, 867–872 (2004)CrossRefGoogle Scholar
  14. 14.
    Y. Guaaybess, L. Zerhouni, E. El Moussafir, A. Laaraj, R. Adhiri, M. Moussetad, Effect of Ce and La substitution on dielectric properties of lead titanate ceramics. J. Mater. Environ. Sci. 6(12), 3491–3495 (2015)Google Scholar
  15. 15.
    R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Dielectric and piezoelectric characteristics of samarium modified lead titanate ceramics. Matter. Sci. Eng. B103, 145–151 (2003)CrossRefGoogle Scholar
  16. 16.
    B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  17. 17.
    H. Takeuchi, S. Jyomura, E. Yamamoto, Y. Ito, J.I. Acoust, Soc. Am. 72(4), 1114–1120 (1982)Google Scholar
  18. 18.
    D. Damjanovic, T.R. Gururaja, S.J. Jang, L.E. Cross, Temperature behavior of the complex piezoelectric d31 coefficient in modified lead titanate ceramics. Mater. Lett. 4(10), 414–419 (1986)CrossRefGoogle Scholar
  19. 19.
    V. Singh, K.K. Bamzai, S. Suri, Microstructural, thermal and dielectric characteristics of Yttrium modified Lead Titanate Ceramics. Integr. Ferroelectr. 116, 82–100 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Singh, V. Singh, R. Gupta, K.K. Bamzai, Structural, dielectric, piezoelectric and ferroelectric behavior of rare earth double doped lead titanate ceramics synthesized by solid state method. J. Appl. Phys. (IOSR-JAP) 6(4), 8–14 (2014)CrossRefGoogle Scholar
  21. 21.
    K.R. Han, H.J. Koo, M.-J. Hong, C.S. Lin, J. Am. Soc. 83(4), 97 (2000)Google Scholar
  22. 22.
    Z. Cai, X. Xing, R. Yu, G. Liu, Q. Xing, J. Alloys Compd. 388(2), 303–313 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Singh, V. Gupta, K. Sreenivas, R.S. Katiyar, Influence of Ca additives on the optical and dielectric studies of sol–gel derived PbTiO3 ceramics. J. Phys. Chem. Solids 68, 119–123 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Mahboob, G. Prasad, G.S. Kumar, Simulation of dielectric and resonance and anti-resonance data using modified Lorentz equation (T and ω simultaneously) of relaxor ferroelectric and piezoelectric ceramics. Bull. Mater. Sci. 42, 56 (2019)CrossRefGoogle Scholar
  25. 25.
    T. Koschny, P. Markosˇ, D.R. Smith, C.M. Soukoulis, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E 68, 065602(R) (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mounir Belhajji
    • 1
  • Salaheddine Sayouri
    • 1
    Email author
  • Aziz Nfissi
    • 1
  • Taj-dine Lamcharfi
    • 2
  1. 1.LPTA, Fac. Sci. DM, USMBAFesMorocco
  2. 2.LSSC, Fac. Sci & Tech.FesMorocco

Personalised recommendations