Skip to main content
Log in

The use of pulsed beams for increasing radiation resistance of ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Paper presents the results of a study of the applicability of pulsed C+/H+ (85/15) beams with a high current density for directional modification and hardening of the surface layer of AlN nitride ceramics. The purpose of the modification is to increase the radiation resistance to helium embrittlement and swelling as a result of the accumulation of helium in the surface layer. It has been established that an increase in the number of processing pulses leads to a sharp change in the morphology of surface layer, as well as a change in strength characteristics of ceramics. The sharp deterioration of strength characteristics is due to the presence in the structure of the surface layer of a high density of dislocations and defects, as well as the formation of microcracks as a result of pulsed processing with a large number of pulses. The effect of modification on the change in the structural characteristics of investigated samples has been established. It should be noted that these changes occur in a small surface layer with a thickness of not more than 0.5 μm, which is most susceptible to degradation under irradiation and influence of corrosive media during practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Zhang et al., J. Eur. Ceram. Soc. 38(4), 1253–1264 (2018)

    Article  Google Scholar 

  2. K. Luo et al., Surf. Coat. Technol. 322, 19–24 (2017)

    Article  Google Scholar 

  3. A. Takayama et al., Jpn. J. Appl. Phys. 52(1S), 01AL03 (2013)

    Article  Google Scholar 

  4. F. Wang et al., Nucl. Instrum. Methods Phys. Res., Sect. B 393, 88–92 (2017)

    Article  Google Scholar 

  5. D. Sun et al., J. Appl. Phys. 121(22), 225111 (2017)

    Article  Google Scholar 

  6. H. Zhang et al., Appl. Surf. Sci. 434, 1210–1216 (2018)

    Article  Google Scholar 

  7. J.C. Pivin, P. Colombo, G.D. Sorarù, J. Am. Ceram. Soc. 83(4), 713–720 (2000)

    Article  Google Scholar 

  8. W.J. Weber, Nucl. Instrum. Methods Phys. Res., Sect. B 166, 98–106 (2000)

    Article  Google Scholar 

  9. Y. Katoh et al., Fusion Sci. Technol. 44(1), 155–162 (2003)

    Article  Google Scholar 

  10. Y. Uemura et al., J. Nucl. Mater. 490, 242–246 (2017)

    Article  Google Scholar 

  11. R.W. Harrison et al., J. Nucl. Mater. 495, 492–503 (2017)

    Article  Google Scholar 

  12. S.J. Zinkle, V.A. Skuratov, D.T. Hoelzer, Nucl. Instrum. Methods Phys. Res., Sect. B 191(1-4), 758–766 (2002)

    Article  Google Scholar 

  13. M. Obradović et al., Thin Solid Films 591, 164–168 (2015)

    Article  Google Scholar 

  14. P. Song et al., Nucl. Instrum. Methods Phys. Res., Sect. B 326, 332–336 (2014)

    Article  Google Scholar 

  15. A. Kozlovskiy et al., Vacuum 155, 412–422 (2018)

    Article  Google Scholar 

  16. Ch. Dufour et al., J. Phys.: Condens. Matter 5(26), 4573 (1993)

    Google Scholar 

  17. S. Kraft et al., J. Appl. Phys. 91(3), 1129–1134 (2002)

    Article  Google Scholar 

  18. M. Milosavljević et al., J. Phys. D Appl. Phys. 43(6), 065302 (2010)

    Article  Google Scholar 

  19. J.-C. Nappé et al., Nucl. Instrum. Methods Phys. Res., Sect. B 269(2), 100–104 (2011)

    Article  Google Scholar 

  20. A. Kozlovskiy et al., Mater. Res. Exp. 5(6), 065502 (2018)

    Article  Google Scholar 

  21. M. Zdorovets et al., Ceram. Int. 45(7), 8130–8137 (2019)

    Article  Google Scholar 

  22. K. Dukenbayev et al., Vacuum 159, 144–151 (2019)

    Article  Google Scholar 

  23. V.V. Uglov et al., Nucl. Instrum. Methods Phys. Res., Sect. B 435, 228–235 (2018)

    Article  Google Scholar 

  24. A. Kozlovskiy et al., Vacuum 164, 224–232 (2019)

    Article  Google Scholar 

  25. D.H. Lee et al., Adv. Mater. 22(11), 1247–1252 (2010)

    Article  Google Scholar 

  26. J. Cai et al., J. Alloys Compds. 784, 1221–1233 (2019)

    Article  Google Scholar 

  27. C. Dong et al., Surf. Coat. Technol. 163, 620–624 (2003)

    Article  Google Scholar 

  28. K.M. Zhang et al., Surf. Coat. Technol. 201(6), 3096–3102 (2006)

    Article  Google Scholar 

  29. B. Gao et al., Surf. Coat. Technol. 201(14), 6297–6303 (2007)

    Article  Google Scholar 

  30. G.E. Remnev et al., Surf. Coat. Technol. 96(1), 103–109 (1997)

    Article  Google Scholar 

  31. A.D. Pogrebnjak et al., J. Appl. Phys. 87(5), 2142–2148 (2000)

    Article  Google Scholar 

  32. Sh Hao et al., Mater. Lett. 62(3), 414–417 (2008)

    Article  Google Scholar 

  33. N.V. Gavrilov, E.M. Oks, Nucl. Instrum. Methods Phys. Res. Sect. A 439(1), 31–44 (2000)

    Article  Google Scholar 

  34. K. Zhang et al., Surf. Coat. Technol. 201(3–4), 1393–1400 (2006)

    Article  Google Scholar 

  35. K. Zhang et al., J. Vac. Sci. Technol. A 27(5), 1217–1226 (2009)

    Article  Google Scholar 

  36. J. Piekoszewski, Z. Werner, W. Szymczyk, Vacuum 63(4), 475–481 (2001)

    Article  Google Scholar 

  37. O.I. Buzhinskij et al., J. Nucl. Mater. 173(2), 179–184 (1990)

    Article  Google Scholar 

  38. D.V. Zagulyaev et al., Inorg. Mater.: Appl. Res. 10(3), 622–628 (2019)

    Article  Google Scholar 

  39. A.I. Ryabchikov et al., Surf. Coat. Technol. 372, 1–8 (2019)

    Article  Google Scholar 

  40. S. Yang et al., Appl. Surf. Sci. 484, 453–460 (2019)

    Article  Google Scholar 

  41. D.I. Proskurovsky et al., J. Vac. Sci. Technol. A 16(4), 2480–2488 (1998)

    Article  Google Scholar 

  42. X. Li et al., J. Appl. Phys. 80(5), 2687–2690 (1996)

    Article  Google Scholar 

  43. T. Gladkikh et al., Vacuum 161, 103–110 (2019)

    Article  Google Scholar 

  44. K. Dukenbayev et al., J. Mater. Sci.: Mater. Electron. 30(9), 8777–8787 (2019)

    Google Scholar 

  45. A. Kozlovskiy et al., Vacuum 163, 45–51 (2019)

    Article  Google Scholar 

  46. Z. Rosenberg, N.S. Brar, S.J. Bless, J. Appl. Phys. 70(1), 167–171 (1991)

    Article  Google Scholar 

  47. T. Gladkikh et al., Mater. Charact. 150, 88–97 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded under NU ORAU project (Nazarbayev University) « Investigation of high-intensity pulsed ion beam neutralization by volumetric plasma » .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaikanov, M., Kozlovskiy, A., Abduvalov, A. et al. The use of pulsed beams for increasing radiation resistance of ceramics. J Mater Sci: Mater Electron 30, 15724–15733 (2019). https://doi.org/10.1007/s10854-019-01958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01958-x

Navigation