Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15952–15963 | Cite as

Modulating topological structure of carbon nanotube/cyanate ester-boron nitride/cyanate ester multi-layered composites for enhancing dielectric properties, breakdown strength and energy density

  • Jing Yang
  • Li Yuan
  • Guozheng LiangEmail author
  • Chunqing Lu
  • Aijuan GuEmail author
Article
  • 37 Downloads

Abstract

Constructing multi-layered structures based on insulating layers and conductor/polymer composites is proved to be an effective strategy of preparing high dielectric constant conductor/polymer composites with suppressed dielectric loss, high breakdown strength and high energy density; however, up-to-date, researches are mainly focused on three-layer structures, the influence of the layer number on dielectric properties, breakdown strength and energy density of multi-layered composites has not been clearly elaborated yet. Starting from a typical three-layer structure composite (CBC) with outstanding integrated performance using carbon nanotube (CNT)/cyanate ester resin (CE) and hexagonal boron nitride (BN)/CE composites as C layer and B layer, respectively, new four-layer structure (CBCB) and five-layer structure (CBCBC and BCBCB) composites were fabricated to reveal the role and mechanism of layer number and BN content, consequently finding a new technique to get multi-layered composites with better integrated performances. Results show that when the content of BN in B layer is 20 wt%, the five-layer structure composite (CBC20BC) achieves the highest energy density, about 6264% higher than that of 0.4CNT/CE, this improvement of energy density is the maximum value among all multi-layered composites based on conductor/polymer layer reported so far. In addition, the dielectric constant of CBC20BC composite is as high as 352 (100 Hz), and the breakdown strength of CBC20BC composite is 1.4 times of that of CBC composite. The mechanism behind these excellent integrated performances is that the increase in layer number not only enhances the interfacial polarization, but also extends the length and tortuosity of breakdown path.

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 51873135), Key Major Program of Natural Science Fundamental Research Project of Jiangsu Colleges and Universities (Grant No. 18KJA430013), and Priority Academic Program Development of the Jiangsu Higher Education Institution (PAPD) for financially supporting this project.

Supplementary material

10854_2019_1956_MOESM1_ESM.docx (718 kb)
Supplementary material 1 (DOCX 718 kb)

References

  1. 1.
    Z.M. Dang, M.S. Zheng, J.W. Zha, Small 12, 1688 (2016)CrossRefGoogle Scholar
  2. 2.
    C. Liu, L.H. Zheng, L. Yuan, Q.B. Guan, A.J. Gu, G.Z. Liang, J. Phys. Chem. C 120, 28875 (2016)CrossRefGoogle Scholar
  3. 3.
    C.X. Xu, L. Yuan, G.Z. Liang, A.J. Gu, J. Mater. Chem. C 4, 3175 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Li, R.Q. Chu, Z.J. Xu, J.G. Hao, C.C. Hu, J. Du, P. Fu, D.H. Wei, Z.X. Yue, J. Mater. Sci. Mater. Electron. 29, 20952 (2018)CrossRefGoogle Scholar
  5. 5.
    Z. Chen, Y.N. Liu, L.J. Fang, P.K. Jiang, X.Y. Huang, Appl. Surf. Sci. 470, 348 (2019)CrossRefGoogle Scholar
  6. 6.
    A. Klug, M. Denk, T. Bauer, M. Sandholzer, U. Scherf, C. Slugovc, E.J.W. List, Org. Electron. 14, 500 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Sun, L.H. Zheng, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, J. Appl. Polym. Sci. 134, 45218 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Toor, H. So, A.P. Pisano, ACS Appl. Mater. Interfaces 9, 6369 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Zhang, D.R. Wang, P.H. Hu, J.W. Zha, F. You, S.T. Li, Z.M. Dang, J. Mater. Chem. C 3, 4883 (2015)CrossRefGoogle Scholar
  10. 10.
    M.H. Yao, Y. Yuan, E.Z. Li, B. Tang, S.R. Zhang, J. Mater. Sci. Mater. Electron. 29, 20680 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.C. Jiao, L. Yuan, G.Z. Liang, A.J. Gu, Chem. Eng. J. 285, 650 (2016)CrossRefGoogle Scholar
  12. 12.
    S.P. Pawar, S. Biswas, G.P. Kar, S. Bose, Polymer 84, 398 (2016)CrossRefGoogle Scholar
  13. 13.
    C.Q. Lu, L. Yuan, Q.B. Guan, A.J. Gu, G.Z. Liang, J. Phys. Chem. C 122, 5238 (2018)CrossRefGoogle Scholar
  14. 14.
    X.B. Zhang, L. Yuan, Q.B. Guan, G.Z. Liang, A.J. Gu, J. Mater. Chem. A 5, 21909 (2017)CrossRefGoogle Scholar
  15. 15.
    B.H. Wang, G.Z. Liang, Y.C. Jiao, A.J. Gu, L.M. Liu, L. Yuan, W. Zhang, Carbon 54, 224 (2013)CrossRefGoogle Scholar
  16. 16.
    Y.Q. Chen, B.P. Lin, X.Q. Zhang, J.C. Wang, C.W. Lai, Y. Sun, Y.R. Liu, H. Yang, J. Mater. Chem. A 2, 14118 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Shen, Y.H. Hu, W.W. Chen, J.J. Wang, Y.H. Guan, J.W. Du, X. Zhang, J. Ma, M. Li, Y.H. Lin, L.Q. Chen, C.W. Nan, Nano Energy 18, 176 (2015)CrossRefGoogle Scholar
  18. 18.
    Z.C. Shi, J. Wang, F. Mao, C.Q. Yang, C. Zhang, R.H. Fan, J. Mater. Chem. A 5, 14575 (2017)CrossRefGoogle Scholar
  19. 19.
    L.L. Sun, B. Li, Y. Zhao, G. Mitchell, W.H. Zhong, Nanotechnology 21, 305702 (2010)CrossRefGoogle Scholar
  20. 20.
    Y.P. Ma, H. Luo, R. Guo, K.C. Zhou, D. Zhang, Ceram. Int. 44, 20871 (2018)CrossRefGoogle Scholar
  21. 21.
    J.M. Zhu, J.B. Shen, S.Y. Guo, H.J. Sue, Carbon 84, 355 (2015)CrossRefGoogle Scholar
  22. 22.
    W.L. Gao, Y. Zheng, J.B. Shen, S.Y. Guo, ACS Appl. Mater. Interfaces 7, 1541 (2015)CrossRefGoogle Scholar
  23. 23.
    J.M. Zhu, S.S. Luo, B. Cao, J.B. Shen, S.Y. Guo, RSC Adv. 5, 65927 (2015)CrossRefGoogle Scholar
  24. 24.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660 (2012)CrossRefGoogle Scholar
  25. 25.
    B.H. Wang, L.M. Liu, L.Z. Huang, L.F. Chi, G.Z. Liang, L. Yuan, A.J. Gu, Carbon 85, 28 (2015)CrossRefGoogle Scholar
  26. 26.
    B.H. Wang, D.K. Qin, G.Z. Liang, A.J. Gu, L.M. Liu, L. Yuan, J. Phys. Chem. C 117, 15487 (2013)CrossRefGoogle Scholar
  27. 27.
    Z.C. Zhang, Y.Z. Gu, S.K. Wang, Q.W. Li, M. Li, Z.G. Zhang, Carbon 107, 405 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai, H. Wang, Adv. Mater. 27, 6658 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Han, Q. Li, C. Chanthad, M.R. Gadinski, G.Z. Zhang, Q. Wang, Adv. Funct. Mater. 25, 3505 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Shen, D.S. Shen, X. Zhang, J.Y. Jiang, Z.K. Dan, Y. Song, Y.H. Lin, M. Li, C.W. Nan, J. Mater. Chem. A 4, 8359 (2016)CrossRefGoogle Scholar
  31. 31.
    P.H. Hu, Y. Shen, Y.H. Guan, X.H. Zhang, Y.H. Lin, Q.M. Zhang, C.W. Nan, Adv. Funct. Mater. 24, 3172 (2014)CrossRefGoogle Scholar
  32. 32.
    N.X. Xu, L. Hu, Q.L. Zhang, X.R. Xiao, H. Yang, E. Yu, ACS Appl. Mater. Interfaces 7, 27373 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Amrin, V.D. Deshpande, J. Mater. Sci. 51, 2453 (2016)CrossRefGoogle Scholar
  34. 34.
    B.H. Wang, Y.C. Jiao, A.J. Gu, G.Z. Liang, L. Yuan, Compos. Sci. Technol. 91, 8 (2014)CrossRefGoogle Scholar
  35. 35.
    X.D. Zhao, J.P. Cao, J. Zhao, G.H. Hu, Z.M. Dang, J. Mater. Chem. A 2, 10614 (2014)CrossRefGoogle Scholar
  36. 36.
    B.H. Wang, L.M. Liu, G.Z. Liang, L. Yuan, A.J. Gu, J. Mater. Chem. A 3, 23162 (2015)CrossRefGoogle Scholar
  37. 37.
    A.V. Goncharenko, V.Z. Lozovski, E.F. Venger, Opt. Commun. 174, 19 (2000)CrossRefGoogle Scholar
  38. 38.
    Z.Y. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q.B. Zheng, J.K. Kim, Carbon 123, 385 (2017)CrossRefGoogle Scholar
  39. 39.
    Y. Wu, Z.Y. Wang, X. Shen, X. Liu, N.M. Han, Q.B. Zheng, Y.W. Mai, J.K. Kim, ACS Appl. Mater. Interfaces 10, 26641 (2018)CrossRefGoogle Scholar
  40. 40.
    P.R. Bueno, S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Appl. Phys. 84, 3700 (1998)CrossRefGoogle Scholar
  41. 41.
    R. Schmidt, W. Eerenstein, T. Winiecki, F.D. Morrison, P.A. Midgley, Phys. Rev. B 75, 245111 (2007)CrossRefGoogle Scholar
  42. 42.
    J. Schiffbauer, U. Liel, G. Yossifon, Phys. Rev. E 89, 033017 (2014)CrossRefGoogle Scholar
  43. 43.
    S.H. Yao, J.K. Yuan, T. Zhou, Z.M. Dang, J.B. Bai, J. Phys. Chem. C 115, 20011 (2011)CrossRefGoogle Scholar
  44. 44.
    Z.M. Dang, S.H. Yao, J.K. Yuan, J.B. Bai, J. Phys. Chem. C 114, 13204 (2010)CrossRefGoogle Scholar
  45. 45.
    V.K. Prateek, R.K. Thakur, Gupta. Chem. Rev. 116, 4260 (2016)CrossRefGoogle Scholar
  46. 46.
    C. Jiang, D. Zhang, K.C. Zhou, X.F. Zhou, H. Luo, I. Abrahams, J. Mater. Chem. A 4, 18050 (2016)CrossRefGoogle Scholar
  47. 47.
    G.Y. Wang, X.Y. Huang, P.K. Jiang, ACS Appl. Mater. Interfaces 9, 7547 (2017)CrossRefGoogle Scholar
  48. 48.
    X. Zhang, Y. Shen, B. Xu, Q.H. Zhang, L. Gu, J.Y. Jiang, J. Ma, Y.H. Lin, C.W. Nan, Adv. Mater. 28, 2055 (2016)CrossRefGoogle Scholar
  49. 49.
    Y.C. Xie, Y.Y. Yu, Y.F. Feng, W.R. Jiang, Z.C. Zhang, ACS Appl. Mater. Interfaces 9, 2995 (2017)CrossRefGoogle Scholar
  50. 50.
    Z. Pan, L. Yao, J. Zhai, X. Yao, H. Chen, Adv. Mater. 30, 1705662 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and EngineeringCollege of Chemistry, Chemical Engineering and Materials Science, Soochow UniversitySuzhouChina

Personalised recommendations