Skip to main content
Log in

Preparation and photoluminescence of NiFe2O4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 20 December 2019

This article has been updated

Abstract

A facile and economical hydrothermal method was used to synthesize α-Fe2O3 and NiFe2O4 nanoparticles with cubic spinel structure. The crystallography and optical properties of the as-synthesized nanoparticles were studied using X-ray diffraction (XRD) and Photoluminescence spectroscopy (PL). The morphology of the nanoparticles was observed using scanning and transmission electron microscopies (SEM and TEM). X-ray diffraction confirms the formation of the cubic spinel crystal structure of NiFe2O4 nanoparticles with an average crystallite size of 10 nm. The obtained nanopowders presented agglomerated and spherical shaped nanoparticles as shown in SEM and TEM photographs. The hematite has three emission peaks located at 492, 528 and 588 nm. Both Ni-F25 and Ni-F50 samples present two emission peaks located at 538 and 568 nm. While Ni-F75 sample has two emission peaks located at 539 and 569 nm. These peaks might be assigned to the electronic transition in the conduction band of the hematite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 20 December 2019

    In the original version, all the peaks are indexed in all figures expect the two small peaks at 72.08 and 75.54 °; they are assigned to the diffraction plane of the hematite phase (1010) and (220) (JCPDS card number 00-001-1053). The peaks located at 71.5 and 74.5° are assigned to the diffraction plans (620) and (533) of the spinel phase, respectively.

  • 20 December 2019

    In the original version, all the peaks are indexed in all figures expect the two small peaks at 72.08 and 75.54 ��; they are assigned to the diffraction plane of the hematite phase (1010) and (220) (JCPDS card number 00-001-1053). The peaks located at 71.5 and 74.5�� are assigned to the diffraction plans (620) and (533) of the spinel phase, respectively.

References

  1. Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 117, 10121–10211 (2017)

    CAS  Google Scholar 

  2. S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Mater. Res. Express 6, 15023 (2018)

    Google Scholar 

  3. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. 26, 9776–9781 (2015)

    CAS  Google Scholar 

  4. A. Ziaratia, A. Sobhani-Nasab, M. Rahimi-Nasrab, M.R. Ganjali, A. Badiei, J. Rare Earths 35(4), 374–381 (2017)

    Google Scholar 

  5. G. Zhang, H.B. Wu, H.E. Hoster, X.W.D. Lou, Energy Environ. Sci. 7, 302–305 (2014)

    CAS  Google Scholar 

  6. R. Sharma, P. Thakur, P. Sharma, V. Sharma, J. Alloy. Compd. 704, 7–17 (2017)

    CAS  Google Scholar 

  7. M. Sriramulu, D. Shukla, S. Sumathi, Aegle marmelos leaves extract mediated synthesis of zinc ferrite: antibacterial activity and drug delivery. Mater. Res. Express 5, 115404 (2018)

    Google Scholar 

  8. M.A. Maksouda, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Microb. Pathog 127, 144–158 (2019)

    Google Scholar 

  9. T. Zargar, A. Kermanpur, Ceram. Int. 43, 5794–5804 (2017)

    CAS  Google Scholar 

  10. S.M. Hoque, MdS Hossain, S. Choudhury, S. Akhter, F. Hyder, Mater. Lett. 162, 60–63 (2016)

    CAS  Google Scholar 

  11. R. Sahoo, S. Santra, C. Ray, A. Pal, Y. Negishi, S.K. Ray, T. Pal, New J. Chem. 40(2), 1861–1871 (2016)

    CAS  Google Scholar 

  12. N. Yasmin, I. Inam, I.A. Malik, M. Zahid, M.N. Ashiq, S. Abdulsatar, M. Safdar, M. Mirza, Physica B 550, 90–95 (2018)

    CAS  Google Scholar 

  13. Y. Zhang, Y. Wu, Q. Qin, F. Wang, D. Chen, J. Magn. Magn. Mater. 409, 6–9 (2016)

    CAS  Google Scholar 

  14. S. Dabagh, K. Chaudhary, Z. Haider, J. Ali, Results Phys. 8, 93–98 (2018)

    Google Scholar 

  15. C. Hasirci, O. Karaagac, H. Köçkar, J. Magn. Magn. Mater. 474, 282–286 (2019)

    CAS  Google Scholar 

  16. T. Abraham, Am. Ceram. Soc. Bull. 73, 62–65 (1994)

    Google Scholar 

  17. S.S. Ebrahimi, J. Azadmanjiri, Non-Cryst. Solids 353(8–10), 802–804 (2007)

    Google Scholar 

  18. Y. Kinemuchi, K. Ishizaka, H. Suematsu, W.H. Jiang, K. Yatsui, Thin Solid Films 407, 109–113 (2002)

    CAS  Google Scholar 

  19. S. Balaji, R.K. Selvan, L.J. Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Mater. Sci. Eng. 119, 119–124 (2005)

    Google Scholar 

  20. L.E. Mathevula, L.L. Noto, B.M. Mothudi, M. Chithambo, M.S. Dhlamini, J. Lumin. 192, 879–887 (2017)

    Google Scholar 

  21. P. Shikha, B.S. Randhawa, T.S. Kang, RSC Adv. 5(63), 51158–51168 (2015)

    CAS  Google Scholar 

  22. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M. Reza Ganjali, M. Rahimi-Nasrabadi, J. Mater. Sci. 30(7), 6902–6909 (2019)

    CAS  Google Scholar 

  23. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, J. Mater. Sci. 30(6), 5854–5865 (2019)

    CAS  Google Scholar 

  24. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. 27, 11691–11697 (2016)

    CAS  Google Scholar 

  25. A. Mao, G.Y. Han, J.H. Park, J. Mater. Chem. 20(11), 2247 (2010)

    CAS  Google Scholar 

  26. C.H. Kim, H.J. Chun, D.S. Kim, S.Y. Kim, J. Park, J.Y. Moon, G. Lee, Appl. Phys. Lett. 89(22), 22310301–22310303 (2006)

    Google Scholar 

  27. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90, 1773–1787 (2006)

    Google Scholar 

  28. G. Raja, S. Gopinath, R. Azhagu, A.K. Shukla, M.S. Alhoshan, K. Sivakumar, Physica Ex 158, 69–73 (2016)

    Google Scholar 

  29. B.S. Zou, W. Huang, M.Y. Han, S.F.Y. Li, X.C. Wu, Y. Zhang, J.S. Zhang, P.F. Wu, R.Y. Wang, J. Phys. Chem. Solids 58, 1315 (1997)

    CAS  Google Scholar 

  30. Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, B.S. Zou, C. Burda, Phys. Rev. B 71, 125411 (2005)

    Google Scholar 

  31. B.S. Zou, V. Volkov, J. Phys. Chem. Solids 61, 757 (2000)

    CAS  Google Scholar 

  32. Y. Zhang, W. Liu, C. Wu, T. Gong, J. Wei, M. Ma, K. Wang, M. Zhong, D. Wu, Mater. Res. Bull. 43, 3490–3494 (2008)

    CAS  Google Scholar 

  33. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, MA, 1978), p. 102

    Google Scholar 

  34. M.B. Gawande, A. Rathi, I.D. Nogueira, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodoro, ChemPlusChem 77(10), 865–871 (2012)

    CAS  Google Scholar 

  35. Y.-J. Sun, Ceram. Int. 43, 16474–16481 (2017)

    CAS  Google Scholar 

  36. P.G. Vekilov, Nanoscale 2, 2346–2357 (2010)

    CAS  Google Scholar 

  37. N. Kasapoglu, A. Baykal, M.S. Toprak, Y. Koseoglu, H. Bayradkar, Turk. J. Chem. 31, 659–666 (2007)

    CAS  Google Scholar 

  38. C. Mahala, M.D. Sharma, M. Basu, Eletrochim. Acta 273, 462–473 (2018)

    CAS  Google Scholar 

  39. D. Chen, D. Chen, X. Jiao, Y. Zhao, M. He, Powder Technol. 133, 247–250 (2003)

    CAS  Google Scholar 

  40. S. Sagadevan, Z.Z. Chowdhury, R.F. Rafique, Mater Res. 21, e20160533 (2018)

    CAS  Google Scholar 

  41. B. Zou, V. Volkov, J. Phys. Chem. Solid. 61, 757–764 (2000)

    CAS  Google Scholar 

  42. Z.D. Pozum, G. Henkelman, J. Chem. Phys. 134, 224706 (2011)

    Google Scholar 

  43. D.A. Wheeler, G. Wang, Y. Ling, Y. Li, J.Z. Zhang, Energy Environ. Sci. 5, 6672 (2012)

    Google Scholar 

  44. Y. Zhang, W. Liu, C. Wu, T. Gong, J. Wei, M. Ma, K. Wang, M. Zhong, D. Wu, Mater Res. Bull. 43, 3490–3494 (2008)

    CAS  Google Scholar 

  45. R. Reveendran, M.A. Khadar, Mater. Chem. Phys. 219, 142–154 (2018)

    CAS  Google Scholar 

  46. A. Rufux, N. Sreeju, D. Philip, J. Phys. Chem. Solids 124, 221 (2019)

    Google Scholar 

  47. P. Thomas, P. Sreekanth, K. Abraham, J. Appl. Phys. 117, 053103 (2015)

    Google Scholar 

  48. M.A. Marzouk, S.A. Nafa, H.A. Zayed, N.S. Hassan, J. Mater. Res. Technol. 5, 226 (2016)

    CAS  Google Scholar 

  49. S. Shen, C.X. Kronawitter, J. Jiang, S.S. Mao, L. Guo, Nano Res. 5, 327 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hjiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Alonizan, N.H., Althubayti, M.M. et al. Preparation and photoluminescence of NiFe2O4 nanoparticles. J Mater Sci: Mater Electron 30, 15379–15387 (2019). https://doi.org/10.1007/s10854-019-01914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01914-9

Navigation