Skip to main content
Log in

Anomalous photoluminescence and UV light sensing characteristics of ZnO:Ga nanowires—role of Ga content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga doped ZnO nanostructures were synthesized by VLS mechanism in which Ga was simultaneously used as a catalyst as well as dopant with varied Ga layer thickness (1 nm, 3 nm, 5 nm and 10 nm). The synthesized ZnO NWs were studied for optical and UV light sensing characteristics. The morphology of grown nanostructures studied by SEM showed that the diameter of nanowires increased with the thickness of the Ga film increase. XRD patterns revealed that ZnO was present in Wurtzite (hexagonal) phase. In addition to ZnO an impurity phase of Ga2O3 was also observed in all synthesized ZnO NWs. The amount of Ga doping affected the position and intensity of ZnO (002) reflection peak in the XRD patterns. This was ascribed to two factors, one is substitution of Ga atoms at the Zn site in the ZnO crystal structure and secondly tendency of Ga to become interstitial. Room temperature and temperature dependent photoluminescence spectroscopy was performed to study the band edge and defected assisted luminescence. In the low temperature PL spectra, DAP transition at (3.30–3.32 eV) and neutral Ga donor bound exciton DoX lines were observed, which disappeared when the temperature was raised above 100 K, which confirmed the successful Ga doping in ZnO crystal structure. The PL intensity showed anomalous behavior as a consequence of tail edge states, which showed strong dependence on Ga content. It was observed that the activation energy for radiative transitions decreased rapidly while the activation energy for non-radiative did not decrease appreciably with the Ga content. This led to enhanced UV sensing characteristics of ZnO NWs with slow recovery time. It is demonstrated that the recovery time depended on the Ga content as it became slow for large Ga content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Galstyann, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram. Int. 41, 14239–14244 (2015). https://doi.org/10.1016/j.ceramint.2015.07.052

    Article  Google Scholar 

  2. S. Chaudhar, A. Umar, K. Bhasin, S. Baskoutas, Chemical sensing applications of ZnO nanomaterials. Materials 11(2), 287 (2018)

    Article  Google Scholar 

  3. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11), 1013–1098 (2011)

    Article  Google Scholar 

  4. P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, R. Martins, Effect of different dopant elements on the properties of ZnO thin films. Vacuum 64(3–4), 281–285 (2002)

    Article  Google Scholar 

  5. C.L. Hsu, K.C. Chen, T.Y. Tsai, T.J. Hsueh, Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires. Sens. Actuators B 182, 190–196 (2013). https://doi.org/10.1016/j.snb.2013.03.002

    Article  Google Scholar 

  6. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A 267, 242–261 (2017)

    Article  Google Scholar 

  7. C. Shao, Y. Chang, Y. Long, High performance of nanostructured ZnO film gas sensor at room temperature. Sens. Actuators B 204, 666–672 (2014). https://doi.org/10.1016/j.snb.2014.08.003

    Article  Google Scholar 

  8. J. Grabowska, K.K. Nanda, E. McGlynn, J.-P. Mosnier, M.O. Henry, Studying the growth conditions, the alignment and structure of ZnO nanorods. Surf. Coat. Technol. 200, 1093–1096 (2005). https://doi.org/10.1016/j.surfcoat.2005.01.030

    Article  Google Scholar 

  9. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, Manganese-doped ZnO nanobelts for spintronics. Appl. Phys. Lett. 84, 783 (2004). https://doi.org/10.1063/1.1645319

    Article  Google Scholar 

  10. J. Grabowska, K.K. Nanda, E. McGlynn, J.P. Mosnier, M.O. Henry, A. Beaucamp, A. Meaney, Synthesis and photoluminescence of ZnO nanowires/nanorods. J. Mater. Sci. 16(7), 397–401 (2005)

    Google Scholar 

  11. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003). https://doi.org/10.1063/1.1605808

    Article  Google Scholar 

  12. X.S. Fang, L.F. Hu, B. Gao, L. Zhao, L. Meiyong, K. Chu, Y. Bando, D. Golberg, New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 21, 3907–3915 (2011). https://doi.org/10.1002/adfm.201100743

    Article  Google Scholar 

  13. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003). https://doi.org/10.1126/science.1090899

    Article  Google Scholar 

  14. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001). https://doi.org/10.1126/science.1062711

    Article  Google Scholar 

  15. X.S. Fang, S. Xiong, T.Y. Zhai, Y. Bando, M. Liao, U.K. Gautam, Y. Koide, X. Zhang, Y. Qian, D. Golberg, High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors. Adv. Mater. 21, 5016–5021 (2009). https://doi.org/10.1002/adma.200902126

    Article  Google Scholar 

  16. W. Yang, R.D. Vispute, S. Chooun, R.P. Shanna, T. Venkatesan, H. Shen, Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films. Appl. Phys. Lett 78(18), 2787–2789 (2001)

    Article  Google Scholar 

  17. R. Yakimova, L. Selegård, V. Khranovskyy, R. Pearce, A. Lloyd Spetz, K. Uvdal, ZnO materials and surface tailoring for biosensing. Front. Biosci 4, 254–278 (2012)

    Article  Google Scholar 

  18. K. Kim, Z. Jin, Y. Abe, M. Kawanaura, Structural and optical properties of Cu, Ag, and Al-doped zinc oxide nanorods. Superlattices Microstruct. 75, 455–460 (2014)

    Article  Google Scholar 

  19. A. Hastir, N. Kohli, O.S. Kang, S.G. Virpal, R.C. Singh, Effect on structural, morphological, optical and gas sensing behaviour of Cr doped zinc oxide. J. Electron Devices. 23, 1909–1917 (2016)

    Google Scholar 

  20. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, X.G. Gao, J.P. Li, Positive temperature coefficient resistance and humidity sensing properties of Cd- doped ZnO nanowires. Appl. Phys. Lett. 84(16), 3085–3087 (2004)

    Article  Google Scholar 

  21. Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 97(22), 223107 (2010)

    Article  Google Scholar 

  22. P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes. J. Phys. D Appl. Phys. 42, 035102 (2009). https://doi.org/10.1088/0022-3727/42/3/035102

    Article  Google Scholar 

  23. K. Yoshino, T. Hata, T. Kakeno, H. Komaki, M. Yoneta, Y. Akaki, T. Ikari, Electrical and optical characterization of n-type ZnO thin films. Phys. Status Solidi (c) 2, 626–630 (2003)

    Article  Google Scholar 

  24. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Bound exciton and donor–acceptor pair recombinations in ZnO. Phys. Status Solidi B 241, 231–260 (2004). https://doi.org/10.1002/pssb.200301962

    Article  Google Scholar 

  25. D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, K. Nordlund, Evidence for native-defect donors in n-type ZnO. Phys. Rev. Lett. 95, 225502 (2005). https://doi.org/10.1103/PhysRevLett.95.225502

    Article  Google Scholar 

  26. H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 3761–3763 (2000). https://doi.org/10.1063/1.1331089

    Article  Google Scholar 

  27. F. Tuomisto, V. Ranki, K. Saarinen, D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys. Rev. Lett. 91, 205502 (2003)

    Article  Google Scholar 

  28. Z. Yang, D.C. Look, J.L. Liu, Ga-related photoluminescence lines in Ga-doped ZnO grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 94, 072101 (2009). https://doi.org/10.1063/1.3080204

    Article  Google Scholar 

  29. Y. Jiang, J. Yang, L. Li, M. Gao, Structural, morphological, optical and electrical properties of Ga-doped ZnO transparent conducting thin films. Appl. Surf. Sci. 421, 446–452 (2017)

    Article  Google Scholar 

  30. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996). https://doi.org/10.1063/1.362349

    Article  Google Scholar 

  31. D.C. Look, B. Claflin, P-type doping and devices based on ZnO. Phys. Status Solidi (B) 241, 624–630 (2004). https://doi.org/10.1002/pssb.200304271

    Article  Google Scholar 

  32. A.S. Bhatti, V.N. Antonov, P. Swaminathan, J.S. Palmer, J.H. Weaver, Anomalous photoluminescence behavior from amorphous Ge quantum dots produced by buffer-layer-assisted growth. Appl. Phys. Lett. 90, 011903 (2007). https://doi.org/10.1063/1.2426892

    Article  Google Scholar 

  33. M. Hafeez, A. Ali, S. Manzoor, A.S. Bhatti, Anomalous optical and magnetic behavior of multi-phase Mn doped Zn2SiO4 nanowires: a new class of dilute magnetic semiconductors. Nanoscale 6, 14845–14855 (2014). https://doi.org/10.1039/C4NR03501A

    Article  Google Scholar 

Download references

Acknowledgement

The research was funded by the HEC NRPU grants # 261 and # 1770. Authors are thankful to CUI for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Saleem Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M.S., Nazir, T., Farooq, A. et al. Anomalous photoluminescence and UV light sensing characteristics of ZnO:Ga nanowires—role of Ga content. J Mater Sci: Mater Electron 30, 15285–15292 (2019). https://doi.org/10.1007/s10854-019-01901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01901-0

Navigation