Structural, dielectric, and piezoelectric properties of lead-free (1 − x)K1/2Na1/2NbO3 − xCa(Zn1/3Ta2/3)O3 perovskite solid solution

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polycrystalline ceramics in (1 − x)K1/2Na1/2NbO3 − xCaZn1/3Ta2/3O3 (abbreviated as KNN-CZT) solid solution have been fabricated by using conventional solid-state synthesis route and the effect of CZT addition on the crystal structure, dielectric, and piezoelectric behaviour of KNN has been studied. Rietveld refinement of the room temperature X-ray diffraction data confirmed the crystal structure to be a pure perovskite phase for the compositions in the range x = 0 − 0.10. Further, the crystal structure gradually changed from orthorhombic to cubic via the formation of rhombohedral and tetragonal mixed phases with the increase in x. Raman spectroscopy suggested damping of phonon modes and a strong anharmonicity in the crystal arising due to the increased disorder in the structure as a consequence of multivalent cations occupying the A and B sites in CZT substituted compositions. Dielectric behaviour indicated the shifting of both tetragonal-cubic and orthorhombic–tetragonal phase transitions towards room temperature. The temperature dependent dielectric constant was modelled by Lorentz quadratic law, and the fitted value of diffuseness parameters confirmed an increase in diffuseness of phase transition with increasing substitution. Sample with the composition corresponding to x = 0.02 showed an improved piezoelectric coefficient d33 ~ 125 pC/N and electromechanical coupling coefficient kp ~ 30% at room temperature and d33 ~ 61 pC/N and kp ~ 24% at 300 °C which make this material a potential candidate for high-temperature piezoelectric applications. Variation of voltage coefficient (g33) with the change in compositions are also reported. Improvement in the piezoelectric properties is attributed to the reduced oxygen vacancies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    J. Holterman, P. Groen, An Introduction to Piezoelectric Materials and Applications (Stichting Applied Piezo, Apeldoorn, 2013)

    Google Scholar 

  2. 2.

    M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  Google Scholar 

  3. 3.

    S.M. Gupta, D. Viehland, J. Appl. Phys. 83, 407 (1998)

    Article  Google Scholar 

  4. 4.

    W. Cao, L.E. Cross, Phys. Rev. B 47, 4825 (1993)

    Article  Google Scholar 

  5. 5.

    Y. Li, K.-S. Moon, C.P. Wong, Science 308, 1419 (2005)

    Article  Google Scholar 

  6. 6.

    P.K. Panda, B. Sahoo, Ferroelectrics 474, 128 (2015)

    Article  Google Scholar 

  7. 7.

    D.J. Franzbach, Y.-H. Seo, A.J. Studer, Y. Zhang, J. Glaum, J.E. Daniels, J. Koruza, A. Benčan, B. Malič, K.G. Webber, Sci. Technol. Adv. Mater. 15, 015010 (2014)

    Article  Google Scholar 

  8. 8.

    E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)

    Article  Google Scholar 

  9. 9.

    Y. Tanaka, S. Okamoto, K. Hashimoto, R. Takayama, T. Harigai, H. Adachi, E. Fujii, Sci. Rep. 8, 7847 (2018)

    Article  Google Scholar 

  10. 10.

    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 113 (2007)

    Article  Google Scholar 

  11. 11.

    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, S. Sen, J. Appl. Phys. 123, 224101 (2018)

    Article  Google Scholar 

  12. 12.

    K. Ohbayashi, Piezoelectric Properties and Microstructure of (K, Na)NbO 3  − KTiNbO 5 Composite Lead-Free Piezoelectric Ceramic (Piezoelectric Materials, MDPI, Apeldoorn, 2016), p. 47

    Google Scholar 

  13. 13.

    J. Du, J.-F. Wang, L.-M. Zheng, C.-M. Wang, P. Qi, G.-Z. Zang, Chin. Phys. Lett. 26, 027701 (2009)

    Article  Google Scholar 

  14. 14.

    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  Google Scholar 

  15. 15.

    M. Ahtee, A.W. Hewat, Acta Crystallogr. A 34, 309 (1978)

    Article  Google Scholar 

  16. 16.

    Y.-J. Dai, X.-W. Zhang, K.-P. Chen, Appl. Phys. Lett. 94, 042905 (2009)

    Article  Google Scholar 

  17. 17.

    J.-J. Zhou, J.-F. Li, K. Wang, X.-W. Zhang, J. Mater. Sci. 46, 5111 (2011)

    Article  Google Scholar 

  18. 18.

    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Chem. Soc. 96, 3677 (2013)

    Google Scholar 

  19. 19.

    Y. Guo, K.-I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)

    Article  Google Scholar 

  20. 20.

    K. Wang, J.-F. Li, J. Adv. Ceram. 1, 24 (2012)

    Article  Google Scholar 

  21. 21.

    Y. Zhang, L. Li, B. Shen, J. Zhai, Dalton Trans. 44, 7797 (2015)

    Article  Google Scholar 

  22. 22.

    F. Rubio-Marcos, P. Ochoa, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 4125 (2007)

    Article  Google Scholar 

  23. 23.

    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  24. 24.

    X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136, 2905 (2014)

    Article  Google Scholar 

  25. 25.

    K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv. Mater. 28, 8519 (2016)

    Article  Google Scholar 

  26. 26.

    B. Zhu, Y. Zhu, J. Yang, J. Ou-Yang, X. Yang, Y. Li, W. Wei, Sci. Rep. 6, 39679 (2016)

    Article  Google Scholar 

  27. 27.

    R. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Kawanaka, H. Bando, T. Sekiya, M. Itoh, J. Electroceram. 21, 263 (2008)

    Article  Google Scholar 

  28. 28.

    D. Pan, Y. Guo, X. Fu, R. Guo, H. Duan, Y. Chen, H. Li, H. Liu, Solid State Commun. 259, 29 (2017)

    Article  Google Scholar 

  29. 29.

    F.-Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, J.-F. Li, Adv. Funct. Mater. 26, 1217 (2016)

    Article  Google Scholar 

  30. 30.

    Y. Liu, Y. Pu, J. Alloys Compd. 693, 118 (2017)

    Article  Google Scholar 

  31. 31.

    E. Hollenstein, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 27, 4093 (2007)

    Article  Google Scholar 

  32. 32.

    Y. Quan, W. Ren, G. Niu, L. Wang, J. Zhao, N. Zhang, M. Liu, Z.-G. Ye, L. Liu, T. Karaki, ACS Appl. Mater. Interfaces. 10, 10220 (2018)

    Article  Google Scholar 

  33. 33.

    M. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, L. Pardo, Materials 9, 21 (2016)

    Article  Google Scholar 

  34. 34.

    S. Dwivedi, T. Pareek, S. Kumar, RSC Adv. 8, 24286 (2018)

    Article  Google Scholar 

  35. 35.

    L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929)

    Article  Google Scholar 

  36. 36.

    R. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  37. 37.

    Y. Zhang, B. Liu, B. Shen, J. Zhai, J. Mater. Sci. 28, 11114 (2017)

    Google Scholar 

  38. 38.

    M. Johnsson, Crystallography and Chemistry of Perovskites, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H.K.A.S. Parkin (Wiley, New York, 2007)

    Google Scholar 

  39. 39.

    B. Orayech, A. Faik, G.A. Lopez, O. Fabelo, J.M. Igartua, J. Appl. Crystallogr. 48, 318 (2015)

    Article  Google Scholar 

  40. 40.

    L.J. Hu, Y.H. Chang, M.L. Hu, M.W. Chang, W.S. Tse, J. Raman Spectrosc. 22, 333 (1991)

    Article  Google Scholar 

  41. 41.

    H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Appl. Phys. Lett. 93, 262901 (2008)

    Article  Google Scholar 

  42. 42.

    P.S. Dobal, R.S. Katiyar, J. Raman Spectrosc. 33, 405 (2002)

    Article  Google Scholar 

  43. 43.

    M. Peddigari, P. Dobbidi, AIP Adv. 5, 107129 (2015)

    Article  Google Scholar 

  44. 44.

    K.-I. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064 (2005)

    Article  Google Scholar 

  45. 45.

    T. Pareek, B. Singh, S. Dwivedi, A.K. Yadav, S. Anita, P. Sen, P. Kumar, S. Kumar, Electrochim. Acta 263, 533 (2018)

    Article  Google Scholar 

  46. 46.

    X. Zhao, Q. Chai, B. Chen, X. Chao, Z. Yang, J. Am. Ceram. Soc. 101, 5127 (2018)

    Article  Google Scholar 

  47. 47.

    X. Zhang, D. Yang, Z. Yang, X. Zhao, Q. Chai, X. Chao, L. Wei, Z. Yang, Ceram. Int. 42, 17963 (2016)

    Article  Google Scholar 

  48. 48.

    C. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)

    Article  Google Scholar 

  49. 49.

    S. Kumar, A.K. Yadav, S. Sen, J. Mater. Sci. 28, 12332 (2017)

    Google Scholar 

  50. 50.

    L.A. Ramajo, J. Taub, M.S. Castro, Mater. Res. 17, 728 (2014)

    Article  Google Scholar 

  51. 51.

    C. Slouka, T. Kainz, E. Navickas, G. Walch, H. Hutter, K. Reichmann, J. Fleig, Materials 9, 945 (2016)

    Article  Google Scholar 

  52. 52.

    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.-W. Liu, S. Biring, S. Sen, J. Appl. Phys. 125, 054101 (2019)

    Article  Google Scholar 

  53. 53.

    J. Xing, T. Zheng, J. Wu, D. Xiao, J. Zhu, J. Adv. Dielectr. 08, 1830003 (2018)

    Article  Google Scholar 

  54. 54.

    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)

    Article  Google Scholar 

  55. 55.

    Z. Xiaokun, Z. Boping, Z. Lifeng, Z. Lei, Z. Pengfei, J. Phys. D 47, 065105 (2014)

    Article  Google Scholar 

  56. 56.

    Z. Zhang, J. Yang, Z. Liu, Y. Li, Ferroelectrics 490, 70 (2016)

    Article  Google Scholar 

  57. 57.

    A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, E.V. Sahkar, Phys. Rev. B 68, 052102 (2003)

    Article  Google Scholar 

  58. 58.

    H.-W. Zhu, X.-J. Wang, D.-Y. Zheng, Z.-H. Peng, L. Yang, C. Fang, J. Mater. Sci. 29, 13842 (2018)

    Google Scholar 

  59. 59.

    B. Tilak, Am. J. Mater. Sci. 2, 110 (2012)

    Article  Google Scholar 

  60. 60.

    Z. Huang, Q. Zhang, S. Corkovic, R. Dorey, R.W. Whatmore, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2287 (2006)

    Article  Google Scholar 

  61. 61.

    M.-H. Zhang, K. Wang, J.-S. Zhou, J.-J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li, Acta Mater. 122, 344 (2017)

    Article  Google Scholar 

  62. 62.

    J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, J.-F. Li, J. Mater. Chem. C 3, 8780 (2015)

    Article  Google Scholar 

  63. 63.

    F.-Z. Yao, K. Wang, L.-Q. Cheng, X. Zhang, W. Zhang, F. Zhu, J.-F. Li, J. Am. Ceram. Soc. 98, 448 (2015)

    Article  Google Scholar 

  64. 64.

    J. Wu, Y. Wang, H. Wang, RSC Adv. 4, 64835 (2014)

    Article  Google Scholar 

  65. 65.

    Y. Yuan, J. Wu, H. Tao, X. Lv, X. Wang, X. Lou, J. Appl. Phys. 117, 084103 (2015)

    Article  Google Scholar 

  66. 66.

    S. Kumar, K.B.R. Varma, J. Phys. D 42, 075405 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

SK thanks Scientific and Engineering Research Board (SERB) for the funding this research through the Early Career Research Award (Grant Number: ECR/2017/000561). SK and PK also gratefully acknowledges the financial support from the Department of Science & Technology, New Delhi under INSPIRE Faculty scheme. PK also thanks AMRC, IIT Mandi for Raman spectroscopy facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 330 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, S., Chamoli, N., Pareek, T. et al. Structural, dielectric, and piezoelectric properties of lead-free (1 − x)K1/2Na1/2NbO3 − xCa(Zn1/3Ta2/3)O3 perovskite solid solution. J Mater Sci: Mater Electron 30, 15084–15096 (2019). https://doi.org/10.1007/s10854-019-01881-1

Download citation