Advertisement

Structural, dielectric, and piezoelectric properties of lead-free (1 − x)K1/2Na1/2NbO3 − xCa(Zn1/3Ta2/3)O3 perovskite solid solution

  • Sushmita Dwivedi
  • Nidhi Chamoli
  • Tanvi Pareek
  • Deepu Kumar
  • Pradeep Kumar
  • Sunil KumarEmail author
Article
  • 91 Downloads

Abstract

Polycrystalline ceramics in (1 − x)K1/2Na1/2NbO3 − xCaZn1/3Ta2/3O3 (abbreviated as KNN-CZT) solid solution have been fabricated by using conventional solid-state synthesis route and the effect of CZT addition on the crystal structure, dielectric, and piezoelectric behaviour of KNN has been studied. Rietveld refinement of the room temperature X-ray diffraction data confirmed the crystal structure to be a pure perovskite phase for the compositions in the range x = 0 − 0.10. Further, the crystal structure gradually changed from orthorhombic to cubic via the formation of rhombohedral and tetragonal mixed phases with the increase in x. Raman spectroscopy suggested damping of phonon modes and a strong anharmonicity in the crystal arising due to the increased disorder in the structure as a consequence of multivalent cations occupying the A and B sites in CZT substituted compositions. Dielectric behaviour indicated the shifting of both tetragonal-cubic and orthorhombic–tetragonal phase transitions towards room temperature. The temperature dependent dielectric constant was modelled by Lorentz quadratic law, and the fitted value of diffuseness parameters confirmed an increase in diffuseness of phase transition with increasing substitution. Sample with the composition corresponding to x = 0.02 showed an improved piezoelectric coefficient d33 ~ 125 pC/N and electromechanical coupling coefficient kp ~ 30% at room temperature and d33 ~ 61 pC/N and kp ~ 24% at 300 °C which make this material a potential candidate for high-temperature piezoelectric applications. Variation of voltage coefficient (g33) with the change in compositions are also reported. Improvement in the piezoelectric properties is attributed to the reduced oxygen vacancies.

Notes

Acknowledgements

SK thanks Scientific and Engineering Research Board (SERB) for the funding this research through the Early Career Research Award (Grant Number: ECR/2017/000561). SK and PK also gratefully acknowledges the financial support from the Department of Science & Technology, New Delhi under INSPIRE Faculty scheme. PK also thanks AMRC, IIT Mandi for Raman spectroscopy facility.

Supplementary material

10854_2019_1881_MOESM1_ESM.docx (330 kb)
Supplementary material 1 (DOCX 330 kb)

References

  1. 1.
    J. Holterman, P. Groen, An Introduction to Piezoelectric Materials and Applications (Stichting Applied Piezo, Apeldoorn, 2013)Google Scholar
  2. 2.
    M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)CrossRefGoogle Scholar
  3. 3.
    S.M. Gupta, D. Viehland, J. Appl. Phys. 83, 407 (1998)CrossRefGoogle Scholar
  4. 4.
    W. Cao, L.E. Cross, Phys. Rev. B 47, 4825 (1993)CrossRefGoogle Scholar
  5. 5.
    Y. Li, K.-S. Moon, C.P. Wong, Science 308, 1419 (2005)CrossRefGoogle Scholar
  6. 6.
    P.K. Panda, B. Sahoo, Ferroelectrics 474, 128 (2015)CrossRefGoogle Scholar
  7. 7.
    D.J. Franzbach, Y.-H. Seo, A.J. Studer, Y. Zhang, J. Glaum, J.E. Daniels, J. Koruza, A. Benčan, B. Malič, K.G. Webber, Sci. Technol. Adv. Mater. 15, 015010 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)CrossRefGoogle Scholar
  9. 9.
    Y. Tanaka, S. Okamoto, K. Hashimoto, R. Takayama, T. Harigai, H. Adachi, E. Fujii, Sci. Rep. 8, 7847 (2018)CrossRefGoogle Scholar
  10. 10.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 113 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, S. Sen, J. Appl. Phys. 123, 224101 (2018)CrossRefGoogle Scholar
  12. 12.
    K. Ohbayashi, Piezoelectric Properties and Microstructure of (K, Na)NbO 3  − KTiNbO 5 Composite Lead-Free Piezoelectric Ceramic (Piezoelectric Materials, MDPI, Apeldoorn, 2016), p. 47Google Scholar
  13. 13.
    J. Du, J.-F. Wang, L.-M. Zheng, C.-M. Wang, P. Qi, G.-Z. Zang, Chin. Phys. Lett. 26, 027701 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  15. 15.
    M. Ahtee, A.W. Hewat, Acta Crystallogr. A 34, 309 (1978)CrossRefGoogle Scholar
  16. 16.
    Y.-J. Dai, X.-W. Zhang, K.-P. Chen, Appl. Phys. Lett. 94, 042905 (2009)CrossRefGoogle Scholar
  17. 17.
    J.-J. Zhou, J.-F. Li, K. Wang, X.-W. Zhang, J. Mater. Sci. 46, 5111 (2011)CrossRefGoogle Scholar
  18. 18.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Chem. Soc. 96, 3677 (2013)Google Scholar
  19. 19.
    Y. Guo, K.-I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefGoogle Scholar
  20. 20.
    K. Wang, J.-F. Li, J. Adv. Ceram. 1, 24 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, L. Li, B. Shen, J. Zhai, Dalton Trans. 44, 7797 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Rubio-Marcos, P. Ochoa, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 4125 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  24. 24.
    X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136, 2905 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Adv. Mater. 28, 8519 (2016)CrossRefGoogle Scholar
  26. 26.
    B. Zhu, Y. Zhu, J. Yang, J. Ou-Yang, X. Yang, Y. Li, W. Wei, Sci. Rep. 6, 39679 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Kawanaka, H. Bando, T. Sekiya, M. Itoh, J. Electroceram. 21, 263 (2008)CrossRefGoogle Scholar
  28. 28.
    D. Pan, Y. Guo, X. Fu, R. Guo, H. Duan, Y. Chen, H. Li, H. Liu, Solid State Commun. 259, 29 (2017)CrossRefGoogle Scholar
  29. 29.
    F.-Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.-X. Ding, B. Xu, L.-Q. Cheng, M.-P. Zheng, Y.-D. Hou, J.-F. Li, Adv. Funct. Mater. 26, 1217 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y. Pu, J. Alloys Compd. 693, 118 (2017)CrossRefGoogle Scholar
  31. 31.
    E. Hollenstein, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 27, 4093 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Quan, W. Ren, G. Niu, L. Wang, J. Zhao, N. Zhang, M. Liu, Z.-G. Ye, L. Liu, T. Karaki, ACS Appl. Mater. Interfaces. 10, 10220 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Villafuerte-Castrejón, E. Morán, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Peña-Jiménez, S.-O. Rea-López, L. Pardo, Materials 9, 21 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Dwivedi, T. Pareek, S. Kumar, RSC Adv. 8, 24286 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929)CrossRefGoogle Scholar
  36. 36.
    R. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, B. Liu, B. Shen, J. Zhai, J. Mater. Sci. 28, 11114 (2017)Google Scholar
  38. 38.
    M. Johnsson, Crystallography and Chemistry of Perovskites, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H.K.A.S. Parkin (Wiley, New York, 2007)Google Scholar
  39. 39.
    B. Orayech, A. Faik, G.A. Lopez, O. Fabelo, J.M. Igartua, J. Appl. Crystallogr. 48, 318 (2015)CrossRefGoogle Scholar
  40. 40.
    L.J. Hu, Y.H. Chang, M.L. Hu, M.W. Chang, W.S. Tse, J. Raman Spectrosc. 22, 333 (1991)CrossRefGoogle Scholar
  41. 41.
    H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Appl. Phys. Lett. 93, 262901 (2008)CrossRefGoogle Scholar
  42. 42.
    P.S. Dobal, R.S. Katiyar, J. Raman Spectrosc. 33, 405 (2002)CrossRefGoogle Scholar
  43. 43.
    M. Peddigari, P. Dobbidi, AIP Adv. 5, 107129 (2015)CrossRefGoogle Scholar
  44. 44.
    K.-I. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Jpn. J. Appl. Phys. 44, 7064 (2005)CrossRefGoogle Scholar
  45. 45.
    T. Pareek, B. Singh, S. Dwivedi, A.K. Yadav, S. Anita, P. Sen, P. Kumar, S. Kumar, Electrochim. Acta 263, 533 (2018)CrossRefGoogle Scholar
  46. 46.
    X. Zhao, Q. Chai, B. Chen, X. Chao, Z. Yang, J. Am. Ceram. Soc. 101, 5127 (2018)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, D. Yang, Z. Yang, X. Zhao, Q. Chai, X. Chao, L. Wei, Z. Yang, Ceram. Int. 42, 17963 (2016)CrossRefGoogle Scholar
  48. 48.
    C. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Kumar, A.K. Yadav, S. Sen, J. Mater. Sci. 28, 12332 (2017)Google Scholar
  50. 50.
    L.A. Ramajo, J. Taub, M.S. Castro, Mater. Res. 17, 728 (2014)CrossRefGoogle Scholar
  51. 51.
    C. Slouka, T. Kainz, E. Navickas, G. Walch, H. Hutter, K. Reichmann, J. Fleig, Materials 9, 945 (2016)CrossRefGoogle Scholar
  52. 52.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.-W. Liu, S. Biring, S. Sen, J. Appl. Phys. 125, 054101 (2019)CrossRefGoogle Scholar
  53. 53.
    J. Xing, T. Zheng, J. Wu, D. Xiao, J. Zhu, J. Adv. Dielectr. 08, 1830003 (2018)CrossRefGoogle Scholar
  54. 54.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)CrossRefGoogle Scholar
  55. 55.
    Z. Xiaokun, Z. Boping, Z. Lifeng, Z. Lei, Z. Pengfei, J. Phys. D 47, 065105 (2014)CrossRefGoogle Scholar
  56. 56.
    Z. Zhang, J. Yang, Z. Liu, Y. Li, Ferroelectrics 490, 70 (2016)CrossRefGoogle Scholar
  57. 57.
    A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, E.V. Sahkar, Phys. Rev. B 68, 052102 (2003)CrossRefGoogle Scholar
  58. 58.
    H.-W. Zhu, X.-J. Wang, D.-Y. Zheng, Z.-H. Peng, L. Yang, C. Fang, J. Mater. Sci. 29, 13842 (2018)Google Scholar
  59. 59.
    B. Tilak, Am. J. Mater. Sci. 2, 110 (2012)CrossRefGoogle Scholar
  60. 60.
    Z. Huang, Q. Zhang, S. Corkovic, R. Dorey, R.W. Whatmore, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2287 (2006)CrossRefGoogle Scholar
  61. 61.
    M.-H. Zhang, K. Wang, J.-S. Zhou, J.-J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li, Acta Mater. 122, 344 (2017)CrossRefGoogle Scholar
  62. 62.
    J.-S. Zhou, K. Wang, F.-Z. Yao, T. Zheng, J. Wu, D. Xiao, J. Zhu, J.-F. Li, J. Mater. Chem. C 3, 8780 (2015)CrossRefGoogle Scholar
  63. 63.
    F.-Z. Yao, K. Wang, L.-Q. Cheng, X. Zhang, W. Zhang, F. Zhu, J.-F. Li, J. Am. Ceram. Soc. 98, 448 (2015)CrossRefGoogle Scholar
  64. 64.
    J. Wu, Y. Wang, H. Wang, RSC Adv. 4, 64835 (2014)CrossRefGoogle Scholar
  65. 65.
    Y. Yuan, J. Wu, H. Tao, X. Lv, X. Wang, X. Lou, J. Appl. Phys. 117, 084103 (2015)CrossRefGoogle Scholar
  66. 66.
    S. Kumar, K.B.R. Varma, J. Phys. D 42, 075405 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreSimrolIndia
  2. 2.School of Basic SciencesIndian Institute of Technology MandiMandiIndia

Personalised recommendations