Structural, thermally stable dielectric, and energy storage properties of lead-free (1 − x)(Na0.50Bi0.50)TiO3 − xKSbO3 ceramics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Effect of substitution and external applied static electric field on the structural and dielectric properties for lead-free (1 − x)(Na0.50Bi0.50)TiO3 − xKSbO3 (0 ≤ x ≤ 0.06) polycrystalline ferroelectric ceramics, fabricated via a modified sol–gel method, were investigated. Structural analysis of synchrotron radiation X-ray diffraction data confirmed the rhombohedral R3c phase for all unpoled samples. After poling, the tetragonal P4bm phase appeared with the rhombohedral phase in all the substituted samples. In poled samples, the phase fraction of the rhombohedral phase suppressed from ~ 93 (for x = 0.03) to ~ 87% (for x = 0.06), while tetragonal phase fraction increased from ~ 7 to ~ 13% as a function of substitution. The high-temperature dielectric analysis confirmed the reduction in depolarization temperature with increasing substitution. Also lattice disorder creates a plateau type dielectric anomaly, which leads to thermally stable dielectric constant ~ 2970 ± 10% (200–390 °C) and ~ 2830 ± 10% (125–400 °C) for x = 0.03 and 0.06 samples, respectively. Ferroelectric measurements showed that ambient temperature ferroelectric properties are improved for x = 0.03 composition with an observed remnant polarization (2Pr ~ 53.4 µC/cm2) and coercive field (2Ec ~ 94.7 kV/cm) as compared to parent NBT compound (2Pr ~ 44.7 µC/cm2, 2Ec ~ 124.5 kV/cm). In addition, at high-temperature, antiferroelectric like ordering enhances the recoverable energy density ~ 0.73 J/cm3 (efficiency ~ 72.3%) for x = 0.06 samples as compared to parent NBT (recoverable energy density ~ 0.05 J/cm3, efficiency ~ 2.4%). These improvements in electrical properties were correlated with structural changes as a function of composition and temperature. Obtained properties suggest that substituted samples might be a suitable candidate for high-temperature stable capacitors (operating temperature > 200 °C), ferroelectric, and energy storage applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3 − 6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  2. 2.

    J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira, J.P. Mercurio, Ferroelectric relaxor behaviour of Na0.5Bi0.5TiO3–SrTiO3 ceramics. Phys. Status Solidi B 241, 1949–1956 (2004)

    Article  Google Scholar 

  3. 3.

    A. Zeb, S.J. Milne, High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J. Mater. Sci. 26, 9243–9255 (2015)

    Google Scholar 

  4. 4.

    J. Watson, G. Castro, A review of high-temperature electronics technology and applications. J. Mater. Sci. 26, 9226–9235 (2015)

    Google Scholar 

  5. 5.

    A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5−xKxBi0.5−xLax)TiO3. Ceram. Int. 44, 20178–20186 (2018)

    Article  Google Scholar 

  6. 6.

    A. Zeb, S.U. Jan, F. Bamiduro, D.A. Hall, S.J. Milne, Temperature-stable dielectric ceramics based on Na0.5Bi0.5TiO3. J. Eur. Ceram. Soc. 38, 1548–1555 (2018)

    Article  Google Scholar 

  7. 7.

    T. Yan, F. Han, S. Ren, J. Deng, X. Ma, L. Ren, L. Fang, L. Liu, B. Peng, B. Elouadi, Enhanced temperature-stable dielectric properties in oxygen annealed 0.85(K0.5Na0.5)NbO3 − 0.15SrZrO3 ceramic. Mater. Res. Bull. 99, 403–408 (2018)

    Article  Google Scholar 

  8. 8.

    A. Zeb, S.J. Milne, Dielectric stability in the relaxor: Na0.5Bi0.5TiO3 − Ba0.8Ca0.2TiO3-Bi(Mg0.5Ti0.5)O3 − NaNbO3 ceramic system. Ceram. Int. 44, 7663–7666 (2018)

    Article  Google Scholar 

  9. 9.

    X. Xu, A.S. Gurav, P.M. Lessner, C.A. Randall, Robust BME class-I MLCCs for harsh-environment applications. IEEE Trans. Ind. Electron. 58, 2636–2643 (2011)

    Article  Google Scholar 

  10. 10.

    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006)

    Article  Google Scholar 

  11. 11.

    B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J.F. Scott, X. Zeng, H. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015)

    Article  Google Scholar 

  12. 12.

    S. Cho, C. Yun, Y.S. Kim, H. Wang, J. Jian, W. Zhang, J. Huang, X. Wang, H. Wang, J.L. MacManus-Driscoll, Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 45, 398–406 (2018)

    Article  Google Scholar 

  13. 13.

    H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)

    Article  Google Scholar 

  14. 14.

    B. Jaffe, W.R. Cook, H.L. Jaffe, Piezoelectric Ceramics (Academic Press, London, New York, 1971)

    Google Scholar 

  15. 15.

    A. Chauhan, S. Patel, R. Vaish, R.C. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009–8031 (2015)

    Article  Google Scholar 

  16. 16.

    Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu, Antiferroelectrics for energy storage applications: a review. Adv. Mater. Technol. 3, 1800111 (2018)

    Article  Google Scholar 

  17. 17.

    A.K. Yadav, S. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and ferroelectric properties of perovskite Pb(1−x)(K0.5Sm0.5)xTiO3 ceramics. RSC Adv. 7, 39434–39442 (2017)

    Article  Google Scholar 

  18. 18.

    A.J. Bell, O. Deubzer, Lead-free piezoelectrics—the environmental and regulatory issues. MRS Bull. 43, 581–587 (2018)

    Article  Google Scholar 

  19. 19.

    A.K. Yadav, A. Verma, S. Kumar, V. Srihari, A.K. Sinha, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1−x)LaxTi(1−-x)AlxO3 ceramics. J. Appl. Phys. 123, 124102 (2018)

    Article  Google Scholar 

  20. 20.

    C.H. Yang, Y.J. Han, X.S. Sun, J. Chen, J. Qian, L.X. Chen, Effects of Nd3+-substitution for Bi-site on the leakage current, ferroelectric and dielectric properties of Na0.5Bi0.5TiO3 thin films. Ceram. Int. 44, 6330–6336 (2018)

    Article  Google Scholar 

  21. 21.

    B. Jiang, T.M. Raeder, D.-Y. Lin, T. Grande, S.M. Selbach, Structural disorder and coherence across the phase transitions of lead-free piezoelectric Bi0.5K0.5TiO3. Chem. Mater. 30, 2631–2640 (2018)

    Article  Google Scholar 

  22. 22.

    K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)

    Article  Google Scholar 

  23. 23.

    C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S.J. Pennycook, Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility. J. Am. Chem. Soc. 140, 15252–15260 (2018)

    Article  Google Scholar 

  24. 24.

    G.A. Smolenskii, A.I. Agranovskaya, N.N. Krainik, New ferroelectrics of complex composition IV. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  25. 25.

    C. Wang, Q. Li, A.K. Yadav, H. Peng, H. Fan, Bi0.48(Na0.84K0.16)0.48Sr0.04(Ti1−xTax)O3 lead-free ceramics with enhanced electric field-induced strain. J. Alloys Compd. 803, 1082–1089 (2019)

    Article  Google Scholar 

  26. 26.

    A.K. Yadav, P. Rajput, O. Alshammari, M. Khan, G. Kumar, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1−xFex)O3. J. Alloys Compd. 701, 619–625 (2017)

    Article  Google Scholar 

  27. 27.

    A.K. Yadav, A. Verma, B. Singh, D. Kumar, S. Kumar, V. Srihari, H.K. Poshwal, P. Kumar, S.-W. Liu, S. Biring, S. Sen, (Pb1−xBix)(Ti1−xMnx)O3: competing mechanism of tetragonal-cubic phase on A/B site modifications. J. Alloys Compd. 765, 278–286 (2018)

    Article  Google Scholar 

  28. 28.

    M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113, 194106 (2013)

    Article  Google Scholar 

  29. 29.

    X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03, 1330001 (2013)

    Article  Google Scholar 

  30. 30.

    G.O. Jones, P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. Sect. B 58, 168–178 (2002)

    Article  Google Scholar 

  31. 31.

    M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)

    Article  Google Scholar 

  32. 32.

    M. Zannen, A. Lahmar, Z. Kutnjak, J. Belhadi, H. Khemakhem, M. El Marssi, Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi048TiO3 ceramic. Solid State Sci. 66, 31–37 (2017)

    Article  Google Scholar 

  33. 33.

    W. Cao, W. Li, T. Zhang, J. Sheng, Y. Hou, Y. Feng, Y. Yu, W. Fei, High-energy storage density and efficiency of (1–x)[0.94 NBT–0.06 BT]–xST lead-free ceramics. Energy Technol. 3, 1198–1204 (2015)

    Article  Google Scholar 

  34. 34.

    C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, Y. Wang, Y. Cui, Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd. 711, 319–326 (2017)

    Article  Google Scholar 

  35. 35.

    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S. Biring, S. Sen, Enhanced energy storage properties in A-site substituted Na05Bi05TiO3 ceramics. J. Alloys Compd. 792, 95–107 (2019)

    Article  Google Scholar 

  36. 36.

    R.A. Malik, A. Hussain, M. Acosta, J. Daniels, H.-S. Han, M.-H. Kim, J.-S. Lee, Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics. J. Eur. Ceram. Soc. 38, 2511–2519 (2018)

    Article  Google Scholar 

  37. 37.

    M. Zannen, A. Lahmar, H. Khemakhem, M. El Marssi, Energy storage property in lead free gd doped Na1/2Bi1/2TiO3 ceramics. Solid State Commun. 245, 1–4 (2016)

    Article  Google Scholar 

  38. 38.

    M. Li, L. Li, J. Zang, D.C. Sinclair, Donor-doping and reduced leakage current in Nb-doped Na0.5Bi0.5TiO3. Appl. Phys. Lett. 106, 102904 (2015)

    Article  Google Scholar 

  39. 39.

    A.B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, J. Rödel, High-temperature poling of ferroelectrics. J. Appl. Phys. 104, 024116 (2008)

    Article  Google Scholar 

  40. 40.

    J. Juuti, H. Jantunen, V.P. Moilanen, S. Leppävuori, Poling conditions of pre-stressed piezoelectric actuators and their displacement. J. Electroceram. 15, 57–64 (2005)

    Article  Google Scholar 

  41. 41.

    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, S. Sen, Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO3-0.06BaTiO3 ceramics. J. Appl. Phys. 123, 224101 (2018)

    Article  Google Scholar 

  42. 42.

    H. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)

    Article  Google Scholar 

  43. 43.

    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.-W. Liu, S. Biring, S. Sen, Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1 − x)Na0.5Bi0.5TiO3 − xAgTaO3 ceramics. J. Appl. Phys. 125, 054101 (2019)

    Article  Google Scholar 

  44. 44.

    D. Maurya, A. Pramanick, M. Feygenson, J.C. Neuefeind, R.J. Bodnar, S. Priya, Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3. J. Mater. Chem. C 2, 8423–8431 (2014)

    Article  Google Scholar 

  45. 45.

    S.P. Singh, R. Ranjan, A. Senyshyn, D. Trots, H. Boysen, Structural phase transition study of the morphotropic phase boundary compositions of Na0.5Bi0.5TiO3–PbTiO3. J. Phys. 21, 375902 (2009)

    Google Scholar 

  46. 46.

    S. Li, J. Morasch, A. Klein, C. Chirila, L. Pintilie, L. Jia, K. Ellmer, M. Naderer, K. Reichmann, M. Gröting, K. Albe, Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3. Phys. Rev. B 88, 045428 (2013)

    Article  Google Scholar 

  47. 47.

    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    Article  Google Scholar 

  48. 48.

    E.-M. Anton, W. Jo, D. Damjanovic, J. Rödel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108 (2011)

    Article  Google Scholar 

  49. 49.

    IEEE Standard on Piezoelectricity. 176, 58 (1987). https://doi.org/10.1109/TUFFC.1996.535477

  50. 50.

    IRE Standards on Piezoelectric Crystals, Measurements of piezoelectric ceramics, 1961. Proc. IRE 49, 1161–1169 (1961)

    Article  Google Scholar 

  51. 51.

    A.K. Yadav, S. Kumar, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5)xTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 10730–10738 (2017)

    Google Scholar 

  52. 52.

    A. Verma, A.K. Yadav, S. Kumar, S. Sen, Lead free dielectric ceramic with stable relative permittivity of 0.90(Na0.50Bi0.50)TiO3–0.10AgNbO3. AIP Conf. Proc. 1942, 030024 (2018)

    Article  Google Scholar 

  53. 53.

    F. Zhu, M.B. Ward, T.P. Comyn, A.J. Bell, S.J. Milne, Dielectric and piezoelectric properties in the lead-free system Na0.5K0.5NbO3–BiScO3–LiTaO3. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1811–1818 (2011)

    Article  Google Scholar 

  54. 54.

    S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111, 031301 (2012)

    Article  Google Scholar 

  55. 55.

    S. Kumar, A.K. Yadav, S. Sen, Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase. J. Mater. Sci.: Mater. Electron. 28, 12332–12341 (2017)

    Google Scholar 

  56. 56.

    H. Borkar, V.N. Singh, B.P. Singh, M. Tomar, V. Gupta, A. Kumar, Room temperature lead-free relaxor–antiferroelectric electroceramics for energy storage applications. RSC Adv. 4, 22840–22847 (2014)

    Article  Google Scholar 

  57. 57.

    Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, Enhanced energy-storage performance of (1 − x)(0.72Bi0.5Na0.5TiO3 − 0.28Bi0.2Sr0.7−0.1TiO3)-xLa ceramics. J. Alloys Compd. 775, 116–123 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Indian Institute of Technology Indore, India for funding the research and using Sophisticated Instrument Centre (SIC). PI also expresses sincere thanks to V. Raghavendra Reddy, UGC-DAE Indore for providing valuable P-E data. Sunil Kumar sincerely thanks SERB for Early Career Research award (ECR/2017/0561). Sajal Biring acknowledges financial support from the Ministry of Science and Technology, Taiwan (MOST 105-2218-E-131-003 and 106-2221-E-131-027).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somaditya Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Yadav, A.K., Kumar, S. et al. Structural, thermally stable dielectric, and energy storage properties of lead-free (1 − x)(Na0.50Bi0.50)TiO3 − xKSbO3 ceramics. J Mater Sci: Mater Electron 30, 15005–15017 (2019). https://doi.org/10.1007/s10854-019-01873-1

Download citation