Advertisement

Structural, thermally stable dielectric, and energy storage properties of lead-free (1 − x)(Na0.50Bi0.50)TiO3 − xKSbO3 ceramics

  • Anita Verma
  • Arun Kumar Yadav
  • Sunil Kumar
  • Velaga Srihari
  • Ravindra Jangir
  • Himanshu K. Poswal
  • Sajal Biring
  • Somaditya SenEmail author
Article
  • 83 Downloads

Abstract

Effect of substitution and external applied static electric field on the structural and dielectric properties for lead-free (1 − x)(Na0.50Bi0.50)TiO3 − xKSbO3 (0 ≤ x ≤ 0.06) polycrystalline ferroelectric ceramics, fabricated via a modified sol–gel method, were investigated. Structural analysis of synchrotron radiation X-ray diffraction data confirmed the rhombohedral R3c phase for all unpoled samples. After poling, the tetragonal P4bm phase appeared with the rhombohedral phase in all the substituted samples. In poled samples, the phase fraction of the rhombohedral phase suppressed from ~ 93 (for x = 0.03) to ~ 87% (for x = 0.06), while tetragonal phase fraction increased from ~ 7 to ~ 13% as a function of substitution. The high-temperature dielectric analysis confirmed the reduction in depolarization temperature with increasing substitution. Also lattice disorder creates a plateau type dielectric anomaly, which leads to thermally stable dielectric constant ~ 2970 ± 10% (200–390 °C) and ~ 2830 ± 10% (125–400 °C) for x = 0.03 and 0.06 samples, respectively. Ferroelectric measurements showed that ambient temperature ferroelectric properties are improved for x = 0.03 composition with an observed remnant polarization (2Pr ~ 53.4 µC/cm2) and coercive field (2Ec ~ 94.7 kV/cm) as compared to parent NBT compound (2Pr ~ 44.7 µC/cm2, 2Ec ~ 124.5 kV/cm). In addition, at high-temperature, antiferroelectric like ordering enhances the recoverable energy density ~ 0.73 J/cm3 (efficiency ~ 72.3%) for x = 0.06 samples as compared to parent NBT (recoverable energy density ~ 0.05 J/cm3, efficiency ~ 2.4%). These improvements in electrical properties were correlated with structural changes as a function of composition and temperature. Obtained properties suggest that substituted samples might be a suitable candidate for high-temperature stable capacitors (operating temperature > 200 °C), ferroelectric, and energy storage applications.

Notes

Acknowledgements

The authors thank the Indian Institute of Technology Indore, India for funding the research and using Sophisticated Instrument Centre (SIC). PI also expresses sincere thanks to V. Raghavendra Reddy, UGC-DAE Indore for providing valuable P-E data. Sunil Kumar sincerely thanks SERB for Early Career Research award (ECR/2017/0561). Sajal Biring acknowledges financial support from the Ministry of Science and Technology, Taiwan (MOST 105-2218-E-131-003 and 106-2221-E-131-027).

References

  1. 1.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3 − 6 mol% BaTiO3. J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  2. 2.
    J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira, J.P. Mercurio, Ferroelectric relaxor behaviour of Na0.5Bi0.5TiO3–SrTiO3 ceramics. Phys. Status Solidi B 241, 1949–1956 (2004)CrossRefGoogle Scholar
  3. 3.
    A. Zeb, S.J. Milne, High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J. Mater. Sci. 26, 9243–9255 (2015)Google Scholar
  4. 4.
    J. Watson, G. Castro, A review of high-temperature electronics technology and applications. J. Mater. Sci. 26, 9226–9235 (2015)Google Scholar
  5. 5.
    A. Verma, A.K. Yadav, N. Khatun, S. Kumar, R. Jangir, V. Srihari, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5−xKxBi0.5−xLax)TiO3. Ceram. Int. 44, 20178–20186 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Zeb, S.U. Jan, F. Bamiduro, D.A. Hall, S.J. Milne, Temperature-stable dielectric ceramics based on Na0.5Bi0.5TiO3. J. Eur. Ceram. Soc. 38, 1548–1555 (2018)CrossRefGoogle Scholar
  7. 7.
    T. Yan, F. Han, S. Ren, J. Deng, X. Ma, L. Ren, L. Fang, L. Liu, B. Peng, B. Elouadi, Enhanced temperature-stable dielectric properties in oxygen annealed 0.85(K0.5Na0.5)NbO3 − 0.15SrZrO3 ceramic. Mater. Res. Bull. 99, 403–408 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Zeb, S.J. Milne, Dielectric stability in the relaxor: Na0.5Bi0.5TiO3 − Ba0.8Ca0.2TiO3-Bi(Mg0.5Ti0.5)O3 − NaNbO3 ceramic system. Ceram. Int. 44, 7663–7666 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Xu, A.S. Gurav, P.M. Lessner, C.A. Randall, Robust BME class-I MLCCs for harsh-environment applications. IEEE Trans. Ind. Electron. 58, 2636–2643 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334 (2006)CrossRefGoogle Scholar
  11. 11.
    B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J.F. Scott, X. Zeng, H. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Cho, C. Yun, Y.S. Kim, H. Wang, J. Jian, W. Zhang, J. Huang, X. Wang, H. Wang, J.L. MacManus-Driscoll, Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 45, 398–406 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)CrossRefGoogle Scholar
  14. 14.
    B. Jaffe, W.R. Cook, H.L. Jaffe, Piezoelectric Ceramics (Academic Press, London, New York, 1971)Google Scholar
  15. 15.
    A. Chauhan, S. Patel, R. Vaish, R.C. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8, 8009–8031 (2015)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu, Antiferroelectrics for energy storage applications: a review. Adv. Mater. Technol. 3, 1800111 (2018)CrossRefGoogle Scholar
  17. 17.
    A.K. Yadav, S. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and ferroelectric properties of perovskite Pb(1−x)(K0.5Sm0.5)xTiO3 ceramics. RSC Adv. 7, 39434–39442 (2017)CrossRefGoogle Scholar
  18. 18.
    A.J. Bell, O. Deubzer, Lead-free piezoelectrics—the environmental and regulatory issues. MRS Bull. 43, 581–587 (2018)CrossRefGoogle Scholar
  19. 19.
    A.K. Yadav, A. Verma, S. Kumar, V. Srihari, A.K. Sinha, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1−x)LaxTi(1−-x)AlxO3 ceramics. J. Appl. Phys. 123, 124102 (2018)CrossRefGoogle Scholar
  20. 20.
    C.H. Yang, Y.J. Han, X.S. Sun, J. Chen, J. Qian, L.X. Chen, Effects of Nd3+-substitution for Bi-site on the leakage current, ferroelectric and dielectric properties of Na0.5Bi0.5TiO3 thin films. Ceram. Int. 44, 6330–6336 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Jiang, T.M. Raeder, D.-Y. Lin, T. Grande, S.M. Selbach, Structural disorder and coherence across the phase transitions of lead-free piezoelectric Bi0.5K0.5TiO3. Chem. Mater. 30, 2631–2640 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)CrossRefGoogle Scholar
  23. 23.
    C. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S.J. Pennycook, Practical high piezoelectricity in barium titanate ceramics utilizing multiphase convergence with broad structural flexibility. J. Am. Chem. Soc. 140, 15252–15260 (2018)CrossRefGoogle Scholar
  24. 24.
    G.A. Smolenskii, A.I. Agranovskaya, N.N. Krainik, New ferroelectrics of complex composition IV. Phys. Solid State 2, 2651–2654 (1961)Google Scholar
  25. 25.
    C. Wang, Q. Li, A.K. Yadav, H. Peng, H. Fan, Bi0.48(Na0.84K0.16)0.48Sr0.04(Ti1−xTax)O3 lead-free ceramics with enhanced electric field-induced strain. J. Alloys Compd. 803, 1082–1089 (2019)CrossRefGoogle Scholar
  26. 26.
    A.K. Yadav, P. Rajput, O. Alshammari, M. Khan, G. Kumar, S. Kumar, P.M. Shirage, S. Biring, S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1−xFex)O3. J. Alloys Compd. 701, 619–625 (2017)CrossRefGoogle Scholar
  27. 27.
    A.K. Yadav, A. Verma, B. Singh, D. Kumar, S. Kumar, V. Srihari, H.K. Poshwal, P. Kumar, S.-W. Liu, S. Biring, S. Sen, (Pb1−xBix)(Ti1−xMnx)O3: competing mechanism of tetragonal-cubic phase on A/B site modifications. J. Alloys Compd. 765, 278–286 (2018)CrossRefGoogle Scholar
  28. 28.
    M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113, 194106 (2013)CrossRefGoogle Scholar
  29. 29.
    X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03, 1330001 (2013)CrossRefGoogle Scholar
  30. 30.
    G.O. Jones, P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. Sect. B 58, 168–178 (2002)CrossRefGoogle Scholar
  31. 31.
    M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Zannen, A. Lahmar, Z. Kutnjak, J. Belhadi, H. Khemakhem, M. El Marssi, Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi048TiO3 ceramic. Solid State Sci. 66, 31–37 (2017)CrossRefGoogle Scholar
  33. 33.
    W. Cao, W. Li, T. Zhang, J. Sheng, Y. Hou, Y. Feng, Y. Yu, W. Fei, High-energy storage density and efficiency of (1–x)[0.94 NBT–0.06 BT]–xST lead-free ceramics. Energy Technol. 3, 1198–1204 (2015)CrossRefGoogle Scholar
  34. 34.
    C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, Y. Wang, Y. Cui, Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd. 711, 319–326 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S. Biring, S. Sen, Enhanced energy storage properties in A-site substituted Na05Bi05TiO3 ceramics. J. Alloys Compd. 792, 95–107 (2019)CrossRefGoogle Scholar
  36. 36.
    R.A. Malik, A. Hussain, M. Acosta, J. Daniels, H.-S. Han, M.-H. Kim, J.-S. Lee, Thermal-stability of electric field-induced strain and energy storage density in Nb-doped BNKT-ST piezoceramics. J. Eur. Ceram. Soc. 38, 2511–2519 (2018)CrossRefGoogle Scholar
  37. 37.
    M. Zannen, A. Lahmar, H. Khemakhem, M. El Marssi, Energy storage property in lead free gd doped Na1/2Bi1/2TiO3 ceramics. Solid State Commun. 245, 1–4 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Li, L. Li, J. Zang, D.C. Sinclair, Donor-doping and reduced leakage current in Nb-doped Na0.5Bi0.5TiO3. Appl. Phys. Lett. 106, 102904 (2015)CrossRefGoogle Scholar
  39. 39.
    A.B. Kounga, T. Granzow, E. Aulbach, M. Hinterstein, J. Rödel, High-temperature poling of ferroelectrics. J. Appl. Phys. 104, 024116 (2008)CrossRefGoogle Scholar
  40. 40.
    J. Juuti, H. Jantunen, V.P. Moilanen, S. Leppävuori, Poling conditions of pre-stressed piezoelectric actuators and their displacement. J. Electroceram. 15, 57–64 (2005)CrossRefGoogle Scholar
  41. 41.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, S. Sen, Increase in depolarization temperature and improvement in ferroelectric properties by V5+ doping in lead-free 0.94(Na0.50Bi0.50)TiO3-0.06BaTiO3 ceramics. J. Appl. Phys. 123, 224101 (2018)CrossRefGoogle Scholar
  42. 42.
    H. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969)CrossRefGoogle Scholar
  43. 43.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S.-W. Liu, S. Biring, S. Sen, Improvement of energy storage properties with the reduction of depolarization temperature in lead-free (1 − x)Na0.5Bi0.5TiO3 − xAgTaO3 ceramics. J. Appl. Phys. 125, 054101 (2019)CrossRefGoogle Scholar
  44. 44.
    D. Maurya, A. Pramanick, M. Feygenson, J.C. Neuefeind, R.J. Bodnar, S. Priya, Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3. J. Mater. Chem. C 2, 8423–8431 (2014)CrossRefGoogle Scholar
  45. 45.
    S.P. Singh, R. Ranjan, A. Senyshyn, D. Trots, H. Boysen, Structural phase transition study of the morphotropic phase boundary compositions of Na0.5Bi0.5TiO3–PbTiO3. J. Phys. 21, 375902 (2009)Google Scholar
  46. 46.
    S. Li, J. Morasch, A. Klein, C. Chirila, L. Pintilie, L. Jia, K. Ellmer, M. Naderer, K. Reichmann, M. Gröting, K. Albe, Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3. Phys. Rev. B 88, 045428 (2013)CrossRefGoogle Scholar
  47. 47.
    C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)CrossRefGoogle Scholar
  48. 48.
    E.-M. Anton, W. Jo, D. Damjanovic, J. Rödel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108 (2011)CrossRefGoogle Scholar
  49. 49.
    IEEE Standard on Piezoelectricity. 176, 58 (1987).  https://doi.org/10.1109/TUFFC.1996.535477
  50. 50.
    IRE Standards on Piezoelectric Crystals, Measurements of piezoelectric ceramics, 1961. Proc. IRE 49, 1161–1169 (1961)CrossRefGoogle Scholar
  51. 51.
    A.K. Yadav, S. Kumar, V.R. Reddy, P.M. Shirage, S. Biring, S. Sen, Structural and dielectric properties of Pb(1−x)(Na0.5Sm0.5)xTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 28, 10730–10738 (2017)Google Scholar
  52. 52.
    A. Verma, A.K. Yadav, S. Kumar, S. Sen, Lead free dielectric ceramic with stable relative permittivity of 0.90(Na0.50Bi0.50)TiO3–0.10AgNbO3. AIP Conf. Proc. 1942, 030024 (2018)CrossRefGoogle Scholar
  53. 53.
    F. Zhu, M.B. Ward, T.P. Comyn, A.J. Bell, S.J. Milne, Dielectric and piezoelectric properties in the lead-free system Na0.5K0.5NbO3–BiScO3–LiTaO3. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1811–1818 (2011)CrossRefGoogle Scholar
  54. 54.
    S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111, 031301 (2012)CrossRefGoogle Scholar
  55. 55.
    S. Kumar, A.K. Yadav, S. Sen, Sol–gel synthesis and characterization of a new four-layer K0.5Gd0.5Bi4Ti4O15 Aurivillius phase. J. Mater. Sci.: Mater. Electron. 28, 12332–12341 (2017)Google Scholar
  56. 56.
    H. Borkar, V.N. Singh, B.P. Singh, M. Tomar, V. Gupta, A. Kumar, Room temperature lead-free relaxor–antiferroelectric electroceramics for energy storage applications. RSC Adv. 4, 22840–22847 (2014)CrossRefGoogle Scholar
  57. 57.
    Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, Enhanced energy-storage performance of (1 − x)(0.72Bi0.5Na0.5TiO3 − 0.28Bi0.2Sr0.7−0.1TiO3)-xLa ceramics. J. Alloys Compd. 775, 116–123 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anita Verma
    • 1
  • Arun Kumar Yadav
    • 1
  • Sunil Kumar
    • 1
  • Velaga Srihari
    • 2
  • Ravindra Jangir
    • 3
  • Himanshu K. Poswal
    • 2
  • Sajal Biring
    • 4
  • Somaditya Sen
    • 1
    • 4
    Email author
  1. 1.Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia
  2. 2.High Pressure & Synchrotron Radiation Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Synchrotrons Utilization SectionRaja Ramanna Center for Advanced TechnologyIndoreIndia
  4. 4.Electronic EngineeringMing Chi University of TechnologyNew Taipei CityTaiwan

Personalised recommendations